\([MS]^2O\) – A Multi-scale and Multi-step Ontology for Transformation Processes: Application to Micro-Organisms

  • Juliette Dibie
  • Stéphane Dervaux
  • Estelle Doriot
  • Liliana Ibanescu
  • Caroline Pénicaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9717)


This paper focuses on the knowledge representation for an interdisciplinary project concerning transformation processes in food science. The use case concerns the production of stabilized micro-organisms performed at INRA (French National Institute for Agricultural Research). Experimental observations are available for some inputs of the production processes, at different steps and at a certain scale. Available data sets are described using different vocabularies and are stored in different formats. Therefore there is a need to define an ontology, called \([MS]^2O\), as a common and standardized vocabulary. Users’ requirements were defined through competency questions and the ontology was validated against these competency questions. \([MS]^2O\) ontology aims to play a key role as the representation layer of the querying and simulation systems of the project. This leads to the possibility of comparing different production scenarios and suggesting improvements.


Domain ontology building Multi-step and multi-scale ontology Transformation processes 



We are very grateful for the valuable inputs from all the domain experts partners involved in CellExtraDry French national project.


  1. 1.
    Béal, C., Marin, M., Fontaine, É., Fonseca, F., Obert, J.P.: Production et conservation des ferments lactiques et probiotiques. In: Georges, C., François-Marie, L. (eds.) Bactéries lactiques. De la génétique aux ferments, pp. 661–786. Lavoisier (2008)Google Scholar
  2. 2.
    Bizer, C.: Interlinking scientific data on a global scale. Data Sci. J. 12, GRDI6–GRDI12 (2013)CrossRefGoogle Scholar
  3. 3.
    Blomqvist, E., Hitzler, P., Janowicz, K., Krisnadhi, A., Narock, T., Solanki, M.: Considerations regarding ontology design patterns. Semant. Web 7(1), 1–7 (2016)CrossRefGoogle Scholar
  4. 4.
    Buche, P., Dibie-Barthélemy, J., Ibanescu, L., Soler, L.: Fuzzy web data tables integration guided by an ontological and terminological resource. IEEE Trans. Knowl. Data Eng. 25(4), 805–819 (2013)CrossRefGoogle Scholar
  5. 5.
    del Carmen Suárez-Figueroa, M., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: del Carmen Suárez-Figueroa, M., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Gautier, J., Passot, S., Pénicaud, C., Guillemin, H., Cenard, S., Lieben, P., Fonseca, F.: A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. J. Dairy Sci. 96(9), 5591–5602 (2013)CrossRefGoogle Scholar
  7. 7.
    Grubic, T., Fan, I.S.: Supply chain ontology: review, analysis and synthesis. Comput. Ind. 61(8), 776–786 (2010). Semantic Web Computing in IndustryCrossRefGoogle Scholar
  8. 8.
    Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 1–17. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Janowicz, K., Krisnadhi, A., Hu, Y., Suh, S., Weidema, B.P., Rivela, B., Tivander, J., Meyer, D.E., Berg-Cross, G., Hitzler, P., Ingwersen, W., Kuczenski, B., Vardeman, C., Ju, Y., Cheatham, M.: A minimal ontology pattern for life cycle assessment data. In: Blomqvist, E., Hitzler, P., Krisnadhi, A., Narock, T., Solanki, M. (eds.) Proceedings of the 6th Workshop on Ontology and Semantic Web Patterns (WOP 2015) Co-located with the 14th International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, 11 October 2015. CEUR Workshop Proceedings, vol. 1461. (2015)Google Scholar
  10. 10.
    Muljarto, A.-R., Salmon, J.-M., Neveu, P., Charnomordic, B., Buche, P.: Ontology-based model for food transformation processes - application to winemaking. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 329–343. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Pénicaud, C., Landaud, S., Jamme, F., Talbot, P., Bouix, M., Ghorbal, S., Fonseca, F.: Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing. PLoS ONE 9, e111138 (2014)CrossRefGoogle Scholar
  12. 12.
    Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the business processmodelling notation. In: Garbacz, P., Kutz, O. (eds.) Proceedings of the Eighth International Conference on Formal Ontology in Information Systems, FOIS 2014, Rio de Janeiro, Brazil, 22–25 September 2014. Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 133–146. IOS Press (2014)Google Scholar
  13. 13.
    Vardeman, C., Krisnadhi, A., Cheatham, M., Janowicz, K., Ferguson, H., Hitzler, P., Buccellato, A., Thirunarayan, K., Berg-Cross, G., Hahmann, T.: An ontology design pattern for material transformation. In: de Boer, V., Gangemi, A., Janowicz, K., Lawrynowicz, A. (eds.) Proceedings of the 5th Workshop on Ontology and Semantic Web Patterns (WOP 2014) Co-located with the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, 19 October 2014. CEUR Workshop Proceedings, vol. 1302, pp. 73–77. (2014)Google Scholar
  14. 14.
    Velly, H., Bouix, M., Passot, S., Pénicaud, C., Beinsteiner, H., Ghorbal, S., Lieben, P., Fonseca, F.: Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of Lactococcus lactis subsp. lactis TOMSC161. Appl. Microbiol. Biotechnol. 99(2), 907–918 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Juliette Dibie
    • 1
  • Stéphane Dervaux
    • 1
  • Estelle Doriot
    • 1
  • Liliana Ibanescu
    • 1
  • Caroline Pénicaud
    • 2
  1. 1.UMR MIA-Paris, AgroParisTech, INRA, Université Paris-SaclayParisFrance
  2. 2.UMR GMPA, AgroParisTech, INRA, Université Paris-SaclayThiverval-GrignonFrance

Personalised recommendations