Learning Rate Based Branching Heuristic for SAT Solvers

  • Jia Hui Liang
  • Vijay Ganesh
  • Pascal Poupart
  • Krzysztof Czarnecki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

In this paper, we propose a framework for viewing solver branching heuristics as optimization algorithms where the objective is to maximize the learning rate, defined as the propensity for variables to generate learnt clauses. By viewing online variable selection in SAT solvers as an optimization problem, we can leverage a wide variety of optimization algorithms, especially from machine learning, to design effective branching heuristics. In particular, we model the variable selection optimization problem as an online multi-armed bandit, a special-case of reinforcement learning, to learn branching variables such that the learning rate of the solver is maximized. We develop a branching heuristic that we call learning rate branching or LRB, based on a well-known multi-armed bandit algorithm called exponential recency weighted average and implement it as part of MiniSat and CryptoMiniSat. We upgrade the LRB technique with two additional novel ideas to improve the learning rate by accounting for reason side rate and exploiting locality. The resulting LRB branching heuristic is shown to be faster than the VSIDS and conflict history-based (CHB) branching heuristics on 1975 application and hard combinatorial instances from 2009 to 2014 SAT Competitions. We also show that CryptoMiniSat with LRB solves more instances than the one with VSIDS. These experiments show that LRB improves on state-of-the-art.

References

  1. 1.
    Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009)Google Scholar
  3. 3.
    Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 118–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, pp. 42–43 (2013)Google Scholar
  5. 5.
    Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 28–33. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Technical report 10(1) (2010)Google Scholar
  7. 7.
    Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_29 CrossRefGoogle Scholar
  8. 8.
    Brown, R.G.: Exponential smoothing for predicting demand. Oper. Res. 5, 145–145 (1957)CrossRefGoogle Scholar
  9. 9.
    Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 322–335. ACM, New York (2006)Google Scholar
  10. 10.
    Carvalho, E., Marques-Silva, J.P.: Using rewarding mechanisms for improving branching heuristics. In: Proceedings of the Seventh International Conference on Theory and Applications of Satisfiability Testing (2004)Google Scholar
  11. 11.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Form. Methods Syst. Des. 19(1), 7–34 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Erev, I., Roth, A.E.: Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88(4), 848–881 (1998)Google Scholar
  14. 14.
    Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for satisfiability modulo theories. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 1136–1143. AAAI Press (2015)Google Scholar
  15. 15.
    Gershman, R., Strichman, O.: HaifaSat: a new robust SAT solver. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp. 76–89. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Goldberg, E., Novikov, Y.: BerkMin: a fast and robust sat-solver. Discrete Appl. Math. 155(12), 1549–1561 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Ann. Math. Artif. Intell. 1(1–4), 167–187 (1990)CrossRefMATHGoogle Scholar
  18. 18.
    Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016 (2016)Google Scholar
  20. 20.
    Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K. (eds.) HVC 2015. LNCS, vol. 9434, pp. 225–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26287-1_14 CrossRefGoogle Scholar
  21. 21.
    Loth, M., Sebag, M., Hamadi, Y., Schoenauer, M.: Bandit-based search for constraint programming. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 464–480. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability. In: Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington, DC (1996)Google Scholar
  24. 24.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, DAC 2001, pp. 530–535. ACM, New York (2001)Google Scholar
  25. 25.
    Newsham, Z., Ganesh, V., Fischmeister, S., Audemard, G., Simon, L.: Impact of community structure on SAT solver performance. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 252–268. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Rintanen, J.: Planning and SAT. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 483–504. IOS Press, Amsterdam (2009)Google Scholar
  28. 28.
    Ryan, L.: Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis, Simon Fraser University (2004)Google Scholar
  29. 29.
    Soos, M.: CryptoMiniSat v4. In: SAT Competition, p. 23 (2014)Google Scholar
  30. 30.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg (2014)Google Scholar
  31. 31.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT Press Cambridge, Massachusetts (1998)Google Scholar
  32. 32.
    Yechiam, E., Busemeyer, J.R.: Comparison of basic assumptions embedded in learning models for experience-based decision making. Psychon. Bull. Rev. 12(3), 387–402 (2005)CrossRefGoogle Scholar
  33. 33.
    Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2001, pp. 279–285. IEEE Press, Piscataway (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jia Hui Liang
    • 1
  • Vijay Ganesh
    • 1
  • Pascal Poupart
    • 1
  • Krzysztof Czarnecki
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations