Advertisement

Long Distance Q-Resolution with Dependency Schemes

  • Tomáš Peitl
  • Friedrich Slivovsky
  • Stefan Szeider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

Resolution proof systems for quantified Boolean formulas (QBFs) provide a formal model for studying the limitations of state-of-the-art search-based QBF solvers, which use these systems to generate proofs. In this paper, we define a new proof system that combines two such proof systems: Q-resolution with generalized universal reduction according to a dependency scheme and long distance Q-resolution. We show that the resulting proof system is sound for the reflexive resolution-path dependency scheme—in fact, we prove that it admits strategy extraction in polynomial time. As a special case, we obtain soundness and polynomial-time strategy extraction for long distance Q-resolution with universal reduction according to the standard dependency scheme. We report on experiments with a configuration of DepQBF that generates proofs in this system.

Keywords

Proof System Winning Strategy Universal Variable Dependency Scheme Empty Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Florian Lonsing for helpful discussions and for pointing out how to modify DepQBF so that it generates LDQ(D\(^\text {std}\)) proofs.

References

  1. 1.
    Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Balabanov, V., Jiang, J. R., Janota, M., Widl, M.: Efficient extraction of QBF (counter)models from long-distance resolution proofs. In: Bonet, B., Koenig, S. (eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, Austin, Texas, USA, pp. 3694–3701. AAAI Press (2015)Google Scholar
  4. 4.
    Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. J. Satisfiability, Boolean Model. Comput. 5(1–4), 133–191 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (ed.), 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4–7, 2015, Garching, Germany, vol. 30 of LIPIcs, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  7. 7.
    Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of Paderborn (2010)Google Scholar
  12. 12.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. J. Autom. Reasoning 28(2), 101–142 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as Quantified Boolean Formula. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.), 23rd International Conference on Automated Planning and Scheduling, ICApPS. AAAI (2013)Google Scholar
  14. 14.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MathSciNetMATHGoogle Scholar
  18. 18.
    Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation. In: Fox, M., Poole, D. (eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI . AAAI Press (2010)Google Scholar
  19. 19.
    Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Macii, E. (ed.) Design. Automation and Test in Europe. EDA Consortium San Jose, pp. 811–814. ACM DL, CA, USA (2013)Google Scholar
  20. 20.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In Walsh, T. (ed), Proceedings of IJCAI, pp. 546–553. IJCAI/AAAI (2011)Google Scholar
  21. 21.
    Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Janota, M., Chew, L., Beyersdorff, O.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-Resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as benchmark for QBF-solvers. In: International Workshop on Quantified Boolean Formulas - QBF (2013). http://fmv.jku.at/qbf2013/
  28. 28.
    Lonsing, F.: Dependency Schemes and Search-Based QBF : Theory and Practice. Ph.D. thesis, Johannes Kepler University, Linz, Austria, Apr 2012Google Scholar
  29. 29.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M. (ed.) LPAR-20 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_29 CrossRefGoogle Scholar
  30. 30.
    Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: 22nd AAAI Conference on Artificial Intelligence, pp. 1045–1050. AAAI (2007)Google Scholar
  34. 34.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. 36.
    Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T. Kuehlmann, A. (eds.), Proceedings of the IEEE/ACM International Conference on Computer-aided Design, ICCAD, San Jose, California, USA, November 10–14, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar
  40. 40.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tomáš Peitl
    • 1
  • Friedrich Slivovsky
    • 1
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations