Long Distance Q-Resolution with Dependency Schemes

  • Tomáš Peitl
  • Friedrich Slivovsky
  • Stefan Szeider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

Resolution proof systems for quantified Boolean formulas (QBFs) provide a formal model for studying the limitations of state-of-the-art search-based QBF solvers, which use these systems to generate proofs. In this paper, we define a new proof system that combines two such proof systems: Q-resolution with generalized universal reduction according to a dependency scheme and long distance Q-resolution. We show that the resulting proof system is sound for the reflexive resolution-path dependency scheme—in fact, we prove that it admits strategy extraction in polynomial time. As a special case, we obtain soundness and polynomial-time strategy extraction for long distance Q-resolution with universal reduction according to the standard dependency scheme. We report on experiments with a configuration of DepQBF that generates proofs in this system.

References

  1. 1.
    Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  2. 2.
    Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Balabanov, V., Jiang, J. R., Janota, M., Widl, M.: Efficient extraction of QBF (counter)models from long-distance resolution proofs. In: Bonet, B., Koenig, S. (eds.), Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, Austin, Texas, USA, pp. 3694–3701. AAAI Press (2015)Google Scholar
  4. 4.
    Balabanov, V., Widl, M., Jiang, J.H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. J. Satisfiability, Boolean Model. Comput. 5(1–4), 133–191 (2008)MathSciNetMATHGoogle Scholar
  6. 6.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (ed.), 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4–7, 2015, Garching, Germany, vol. 30 of LIPIcs, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  7. 7.
    Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Biere, A., Lonsing, F.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Bubeck, U.: Model-based transformations for quantified Boolean formulas. Ph.D. thesis, University of Paderborn (2010)Google Scholar
  12. 12.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate Quantified Boolean Formulae and its experimental evaluation. J. Autom. Reasoning 28(2), 101–142 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cashmore, M., Fox, M., Giunchiglia, E.: Partially grounded planning as Quantified Boolean Formula. In: Borrajo, D., Kambhampati, S., Oddi, A., Fratini, S. (eds.), 23rd International Conference on Automated Planning and Scheduling, ICApPS. AAAI (2013)Google Scholar
  14. 14.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res. 26, 371–416 (2006)MathSciNetMATHGoogle Scholar
  18. 18.
    Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation. In: Fox, M., Poole, D. (eds.), Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI . AAAI Press (2010)Google Scholar
  19. 19.
    Goultiaeva, A., Seidl, M., Biere, A.: Bridging the gap between dual propagation and CNF-based QBF solving. In: Macii, E. (ed.) Design. Automation and Test in Europe. EDA Consortium San Jose, pp. 811–814. ACM DL, CA, USA (2013)Google Scholar
  20. 20.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In Walsh, T. (ed), Proceedings of IJCAI, pp. 546–553. IJCAI/AAAI (2011)Google Scholar
  21. 21.
    Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106. Springer, Heidelberg (2014)Google Scholar
  22. 22.
    Janota, M., Chew, L., Beyersdorff, O.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-Resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Kronegger, M., Pfandler, A., Pichler, R.: Conformant planning as benchmark for QBF-solvers. In: International Workshop on Quantified Boolean Formulas - QBF (2013). http://fmv.jku.at/qbf2013/
  28. 28.
    Lonsing, F.: Dependency Schemes and Search-Based QBF : Theory and Practice. Ph.D. thesis, Johannes Kepler University, Linz, Austria, Apr 2012Google Scholar
  29. 29.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M. (ed.) LPAR-20 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_29 CrossRefGoogle Scholar
  30. 30.
    Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. 31.
    Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  33. 33.
    Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF. In: 22nd AAAI Conference on Artificial Intelligence, pp. 1045–1050. AAAI (2007)Google Scholar
  34. 34.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. 36.
    Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Staber, S., Bloem, R.: Fault localization and correction with QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Pileggi, L.T. Kuehlmann, A. (eds.), Proceedings of the IEEE/ACM International Conference on Computer-aided Design, ICCAD, San Jose, California, USA, November 10–14, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar
  40. 40.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tomáš Peitl
    • 1
  • Friedrich Slivovsky
    • 1
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations