Advertisement

Dependency Schemes for DQBF

  • Ralf Wimmer
  • Christoph Scholl
  • Karina Wimmer
  • Bernd Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

Dependency schemes allow to identify variable independencies in QBFs or DQBFs. For QBF, several dependency schemes have been proposed, which differ in the number of independencies they are able to identify. In this paper, we analyze the spectrum of dependency schemes that were proposed for QBF. It turns out that only some of them are sound for DQBF. For the sound ones, we provide a correctness proof, for the others counter examples. Experiments show that a significant number of dependencies can either be added to or removed from a formula without changing its truth value, but with significantly increasing the flexibility for modifying the representation.

Keywords

Conjunctive Normal Form Unique Fixed Point Boolean Formula Universal Expansion Universal Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the anonymous reviewers for their really helpful comments.

References

  1. 1.
    Ashar, P., Ganai, M.K., Gupta, A., Ivancic, F., Yang, Z.: Efficient SAT-based bounded model checking for software verification. In: Margaria, T., Steffen, B., Philippou, A., Reitenspieß, M. (eds.) International Symposium on Leveraging Applications of Formal Methods (ISoLA). Technical Report, vol. TR-2004-6, pp. 157–164, Department of Computer Science, University of Cyprus, Paphos, Cyprus, October 2004Google Scholar
  2. 2.
    Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Balabanov, V., Jiang, J.H.R.: Reducing satisfiability and reachability to DQBF, September 2015. Talk at the International Workshop on Quantified Boolean Formulas (QBF)Google Scholar
  4. 4.
    Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)CrossRefGoogle Scholar
  6. 6.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Bubeck, U.: Model-based transformations for quantified boolean formulas. Ph.D. thesis, University of Paderborn (2010)Google Scholar
  8. 8.
    Bubeck, U., Büning, H.K.: Dependency quantified horn formulas: models and complexity. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 198–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 244–257. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods Syst. Design 19(1), 7–34 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Czutro, A., Polian, I., Lewis, M.D.T., Engelke, P., Reddy, S.M., Becker, B.: Thread-parallel integrated test pattern generator utilizing satisfiability analysis. Int. J. Parallel Prog. 38(3–4), 185–202 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Eggersglüß, S., Drechsler, R.: A highly fault-efficient SAT-based ATPG flow. IEEE Des. Test Comput. 29(4), 63–70 (2012)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 243–251. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: International Workshop on Pragmatics of SAT (POS), Trento, Italy (2012)Google Scholar
  15. 15.
    Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF solving. In: Berre, D.L. (ed.) International Workshop on Pragmatics of SAT (POS). EPiC Series, vol. 27, pp. 103–116. EasyChair, Vienna, Austria. http://www.easychair.org/publications/?page=2037484173
  16. 16.
    Van Gelder, A.: Variable independence and resolution paths for quantified boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence checking of partial designs using dependency quantified Boolean formulae. In: Proceedings of ICCD, pp. 396–403. IEEE CS, Asheville, October 2013Google Scholar
  18. 18.
    Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier elimination. In: Proceedings of DATE. IEEE, Grenoble, March 2015Google Scholar
  19. 19.
    Lonsing, F., Biere, A.: Efficiently representing existential dependency sets for expansion-based QBF solvers. ENTCS 251, 83–95 (2009)MATHGoogle Scholar
  20. 20.
    Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer non-cooperative games of incomplete information. Comput. Math. Appl. 41(7–8), 957–992 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artif. Intell. 170(12–13), 1031–1080 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reasoning 42(1), 77–97 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: ACM/IEEE Design Automation Conference (DAC), pp. 238–243. ACM Press, Las Vegas, June 2001Google Scholar
  25. 25.
    Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reasoning 56(4), 459–477 (2016)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF. In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_13 CrossRefGoogle Scholar
  29. 29.
    Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF. Reports of SFB/TR 14 AVACS 110. http://www.avacs.org

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ralf Wimmer
    • 1
    • 2
  • Christoph Scholl
    • 1
  • Karina Wimmer
    • 1
  • Bernd Becker
    • 1
  1. 1.Albert-Ludwigs-Universität Freiburg im BreisgauFreiburg im BreisgauGermany
  2. 2.Dependable Systems and SoftwareSaarland UniversitySaarbrückenGermany

Personalised recommendations