Q-Resolution with Generalized Axioms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

Q-resolution is a proof system for quantified Boolean formulas (QBFs) in prenex conjunctive normal form (PCNF) which underlies search-based QBF solvers with clause and cube learning (QCDCL). With the aim to derive and learn stronger clauses and cubes earlier in the search, we generalize the axioms of the Q-resolution calculus resulting in an exponentially more powerful proof system. The generalized axioms introduce an interface of Q-resolution to any other QBF proof system allowing for the direct combination of orthogonal solving techniques. We implemented a variant of the Q-resolution calculus with generalized axioms in the QBF solver DepQBF. As two case studies, we apply integrated SAT solving and resource-bounded QBF preprocessing during the search to heuristically detect potential axiom applications. Experiments with application benchmarks indicate a substantial performance improvement.

References

  1. 1.
    Ayari, A., Basin, D.A.: QUBOS: Deciding quantified boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and perspectives. JSAT 5(1–4), 133–191 (2008)MathSciNetMATHGoogle Scholar
  4. 4.
    Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: STACS. Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  6. 6.
    Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)MATHGoogle Scholar
  8. 8.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)Google Scholar
  10. 10.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symbolic Logic 44(1), 36–50 (1979)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. FAIA, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009)Google Scholar
  12. 12.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)MathSciNetMATHGoogle Scholar
  13. 13.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. JAIR 53, 127–168 (2015)MathSciNetMATHGoogle Scholar
  14. 14.
    Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The QBF Gallery 2014: The QBF competition at the FLoC olympic games. JSAT 9, 187–206 (2015)Google Scholar
  16. 16.
    Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp. 325–331. AAAI Press (2015)Google Scholar
  18. 18.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  23. 23.
    Lonsing, F., Biere, A.: Failed literal detection for QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 259–272. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. CoRR abs/1604.05994, SAT 2016 proceedings version with appendix (2016). http://arxiv.org/abs/1604.05994
  25. 25.
    Lonsing, F., Seidl, M., Van Gelder, A.: The QBF Gallery: Behind the scenes. Artif. Intell. 237, 92–114 (2016)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  27. 27.
    Reimer, S., Pigorsch, F., Scholl, C., Becker, B.: Enhanced Integration of QBF Solving Techniques. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), pp. 133–143. Verlag Dr. Kovac (2012)Google Scholar
  28. 28.
    Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1), 77–97 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. FAIA, vol. 185, pp. 131–153. IOS Press, Amsterdam (2009)Google Scholar
  32. 32.
    Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 343–359. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  33. 33.
    Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar
  35. 35.
    Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Knowledge-Based Systems GroupVienna University of TechnologyViennaAustria
  2. 2.Institute for Formal Models and VerificationJKULinzAustria

Personalised recommendations