Abstract

Quantified Boolean formulas (QBFs) generalize propositional formulas by admitting quantifications over propositional variables. QBFs can be viewed as (restricted) formulas of first-order predicate logic and easy translations of QBFs into first-order formulas exist. We analyze different translations and show that first-order resolution combined with such translations can polynomially simulate well-known deduction concepts for QBFs. Furthermore, we extend QBF calculi by the possibility to instantiate a universal variable by an existential variable of smaller level. Combining such an enhanced calculus with the propositional extension rule results in a calculus with a universal quantifier rule which essentially introduces propositional formulas for universal variables. In this way, one can mimic a very general quantifier rule known from sequent systems.

References

  1. 1.
    Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 273–333. Elsevier and MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  2. 2.
    Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science, STACS. LIPIcs, Garching, Germany, 4–7 March 2015, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  6. 6.
    Beyersdorff, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In: AAAI 2016 Workshop Beyond NP (2016)Google Scholar
  7. 7.
    Cook, S.A., Morioka, T.: Quantified propositional calculus and a second-order theory for NC\(^{\text{1 }}\). Arch. Math. Log. 44(6), 711–749 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Eder, E.: Relative complexities of first order calculi. Artificial intelligence = Künstliche Intelligenz. Vieweg (1992)Google Scholar
  9. 9.
    Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Egly, U.: On stronger calculi for QBFs. CoRR, abs/1604.06483 (2016)Google Scholar
  11. 11.
    Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Application, vol. 60. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  16. 16.
    Leitsch, A.: The Resolution Calculus. Texts in Theoretical Computer Science. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  17. 17.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Seidl, M., Lonsing, F., Biere, A.: qbf2epr: A tool for generating EPR formulas from QBF. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR@IJCAR. EPiC Series, vol. 21, pp. 139–148. EasyChair (2012)Google Scholar
  19. 19.
    Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 269–284. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, vol. 8, pp. 234–259. Seminars in Mathematics, V.A. Steklov Mathematical Institute, Leningrad (1968)Google Scholar
  21. 21.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD 2002, San Jose, California, USA, 10–14 November 2002, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für Informationssysteme 184/3Technische Universität WienViennaAustria

Personalised recommendations