Finding Finite Models in Multi-sorted First-Order Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

This work extends the existing MACE-style finite model finding approach to multi-sorted first-order logic. This existing approach iteratively assumes increasing domain sizes and encodes the related ground problem as a SAT problem. When moving to the multi-sorted setting each sort may have a different domain size, leading to an explosion in the search space. This paper focusses on methods to tame that search space. The key approach adds additional information to the SAT encoding to suggest which domains should be grown. Evaluation of an implementation of techniques in the Vampire theorem prover shows that they dramatically reduce the search space and that this is an effective approach to find finite models in multi-sorted first-order logic.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010). http://www.SMT-LIB.org
  2. 2.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Claessen, K., Lillieström, A.: Automated inference of finite unsatisfiability. J. Autom. Reasoning 47(2), 111–132 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 207–221. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: CADE-19 Workshop: Model Computation - Principles, Algorithms and Applications (2003)Google Scholar
  6. 6.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Hoder, K., Kovács, L., Voronkov, A.: Case studies on invariant generation using a saturation theorem prover. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Mccune, W.: A Davis-Putnam Program and its Application to Finite First-Order Model Search: Quasigroup Existence Problems. Technical report, Argonne National Laboratory (1994)Google Scholar
  13. 13.
    Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Schulz, S.: A comparison of different techniques for grounding near-propositional CNF formulae. In: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, May 14–16, 2002, Pensacola Beach, Florida, USA, pp. 72–76 (2002)Google Scholar
  15. 15.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service (2012). https://www.starexec.org
  16. 16.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  17. 17.
    Tammet, T.: Reasoning. Gandalf. J. Autom 18(2), 199–204 (1997)Google Scholar
  18. 18.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20–25 1995, vol. 2s, pp. 298–303 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.Chalmers University of TechnologyGothenburgSweden
  3. 3.EasyChairManchesterUK

Personalised recommendations