A SAT Approach to Branchwidth

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9710)

Abstract

Branch decomposition is a prominent method for structurally decomposing a graph, hypergraph or CNF formula. The width of a branch decomposition provides a measure of how well the object is decomposed. For many applications it is crucial to compute a branch decomposition whose width is as small as possible. We propose a SAT approach to finding branch decompositions of small width. The core of our approach is an efficient SAT encoding which determines with a single SAT-call whether a given hypergraph admits a branch decomposition of certain width. For our encoding we developed a novel partition-based characterization of branch decomposition. The encoding size imposes a limit on the size of the given hypergraph. In order to break through this barrier and to scale the SAT approach to larger instances, we developed a new heuristic approach where the SAT encoding is used to locally improve a given candidate decomposition until a fixed-point is reached. This new method scales now to instances with several thousands of vertices and edges.

References

  1. 1.
    Adler, I., Bui-Xuan, B.-M., Rabinovich, Y., Renault, G., Telle, J.A., Vatshelle, M.: On the boolean-width of a graph: structure and applications. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 159–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautologies. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 593–603 (2002)Google Scholar
  3. 3.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 340–351 (2003)Google Scholar
  4. 4.
    Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evaluation. In: 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Computer Society (2014)Google Scholar
  5. 5.
    Bodlander, H.: TreewidthLIB a benchmark for algorithms for treewidth and related graph problems. http://www.staff.science.uu.nl/~bodla101/treewidthlib/
  6. 6.
    Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3), 233–248 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania (2001)Google Scholar
  8. 8.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 2nd edn. Springer, New York (2000)MATHGoogle Scholar
  9. 9.
    Fomin, F.V., Mazoit, F., Todinca, I.: Computing branchwidth via efficient triangulations and blocks. Discr. Appl. Math. 157(12), 2726–2736 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2, pp. 357–422. Amsterdam University Press (2008)Google Scholar
  11. 11.
    Heule, M.J.H., Szeider, S.: A SAT approach to clique-width. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 318–334. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Hicks, I.V.: Graphs, branchwidth, and tangles! Oh my! Networks 45(2), 55–60 (2005)Google Scholar
  13. 13.
    Hicks, I.V.: Branchwidth heuristics. Congr. Numer. 159, 31–50 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kask, K., Gelfand, A., Otten, L., Dechter, R.: Pushing the power of stochastic greedy ordering schemes for inference in graphical models. In: Burgard, W., Roth, D. (eds.) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, 7–11 August 2011. AAAI Press (2011)Google Scholar
  16. 16.
    Overwijk, A., Penninkx, E., Bodlaender, H.L.: A local search algorithm for branchwidth. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 444–454. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ulusal, E.: Integer Programming Models for the Branchwidth Problem. Ph.D. thesis, Texas A&M University, May 2008Google Scholar
  21. 21.
    Weisstein, E.: MathWorld online mathematics resource. http://mathworld.wolfram.com

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Neha Lodha
    • 1
  • Sebastian Ordyniak
    • 1
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations