Advertisement

Prefix Distance Between Regular Languages

  • Timothy Ng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9705)

Abstract

The prefix distance between two words x and y is defined as the number of symbol occurrences in the words that do not belong to the longest common prefix of x and y. We show how to model the prefix distance using weighted transducers. We use the weighted transducers to compute the prefix distance between two regular languages by a transducer-based approach originally used by Mohri for an algorithm to compute the edit distance. We also give an algorithm to compute the inner prefix distance of a regular language.

Keywords

Polynomial Time Algorithm Edit Distance Regular Language Finite Automaton Edit Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages. J. Comput. Syst. Sci. 79(8), 1302–1321 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benedikt, M., Puppis, G., Riveros, C.: The per-character cost of repairing word languages. Theor. Comput. Sci. 539, 38–67 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bruschi, D., Pighizzini, G.: String distances and intrusion detection: bridging the gap between formal languages and computer security. RAIRO Informatique Théorique et Appl. 40, 303–313 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theor. Comput. Sci. 286(1), 117–138 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin, Heidelberg (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Berline, Heidelberg (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Han, Y.S., Ko, S.K., Salomaa, K.: The edit-distance between a regular language and a context-free language. Int. J. Found. Comput. Sci. 24(07), 1067–1082 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J. Autom. Lang. Comb. 9(2/3), 293–309 (2004)MathSciNetMATHGoogle Scholar
  10. 10.
    Kari, L., Konstantinidis, S., Perron, S., Wozniak, G., Xu, J.: Computing the hamming distance of a regular language in quadratic time. WSEAS Trans. Inf. Sci. Appl. 1(1), 445–449 (2004)Google Scholar
  11. 11.
    Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput. 205(9), 1307–1316 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Konstantinidis, S., Silva, P.V.: Computing maximal error-detecting capabilities and distances of regular languages. Fundam. Inform. 101, 257–270 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms. Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Pighizzini, G.: How hard is computing the edit distance? Inf. Computat. 165(1), 1–13 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  17. 17.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Berlin, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations