Experiments with Synchronizing Automata

  • Andrzej Kisielewicz
  • Jakub Kowalski
  • Marek Szykuła
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9705)

Abstract

We have improved an algorithm generating synchronizing automata with a large length of the shortest reset words. This has been done by refining some known results concerning bounds on the reset length. Our improvements make possible to consider a number of conjectures and open questions concerning synchronizing automata, checking them for automata with a small number of states and discussing the results. In particular, we have verified the Černý conjecture for all binary automata with at most 12 states, and all ternary automata with at most 8 states.

References

  1. 1.
    Almeida, J., Steinberg, B.: Matrix mortality and the Černý-Pin conjecture. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 67–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ananichev, D.S.: The mortality threshold for partially monotonic automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 112–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Béal, M.-P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2), 277–288 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Berlinkov, M., Szykuła, M.: Algebraic synchronization criterion and computing reset words. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 103–115. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  7. 7.
    Cardoso, Â.: The Černý Conjecture and Other Synchronization Problems. Ph.D. thesis, University of Porto, Portugal (2014)Google Scholar
  8. 8.
    Carpi, A., D’Alessandro, F.: Independent sets of words and the synchronization problem. Adv. Appl. Math. 50(3), 339–355 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)Google Scholar
  10. 10.
    Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique théorique et applications 32, 21–34 (1998)MathSciNetGoogle Scholar
  11. 11.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127 (1982)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gonze, F., Jungers, R.M., Trahtman, A.N.: A note on a recent attempt to improve the Pin-Frankl bound. Discrete Math. Theor. Comput. Sci. 17(1), 307–308 (2015)MathSciNetMATHGoogle Scholar
  14. 14.
    Kari, J.: A counter example to a conjecture concerning synchronizing word in finite. EATCS Bull. 73, 146–147 (2001)MathSciNetMATHGoogle Scholar
  15. 15.
    Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In: Handbook of Automata. European Science Foundation (2013)Google Scholar
  16. 16.
    Kisielewicz, A., Szykuła, M.: Generating small automata and the Černý conjecture. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 340–348. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Kisielewicz, A., Szykuła, M.: Generating Synchronizing Automata with Large Reset Lengths (2016). http://arxiv.org/abs/1404.3311
  18. 18.
    Pin, J.-E.: Utilisation de l’algèbre linéaire en théorie des automates. In: Actes du 1er Colloque AFCET-SMF de Mathématiques Appliquées II, pp. 85–92 (1978)Google Scholar
  19. 19.
    Pin, J.-E.: On two combinatorial problems arising from automata theory. In: Proceedings of the International Colloquium on Graph Theory and Combinatorics. North-Holland Mathematics Studies, vol. 75, pp. 535–548 (1983)Google Scholar
  20. 20.
    Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Comput. Sci. 22(7), 1697–1706 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Vorel, V.: Subset synchronization of transitive automata. In: AFL, pp. 370–381 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrzej Kisielewicz
    • 1
  • Jakub Kowalski
    • 1
  • Marek Szykuła
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations