The Replicator: Maybe You Can Have Everything

  • Mark E. Lasbury


Star Trek represents a post-scarcity society in which all material needs are met through the use of the replicator. Raw materials at the atomic level are manipulated in a bottom-up manner to build whatever object is needed, in real time. This may seem like science fiction, but research is bringing manufacture on a molecular scale closer every day. 3D printing has developed to the point that simple objects can be made at home for only a few dollars, but the technologies have moved well beyond 3D printing of plastics or metal. 4D techniques that allow for products that respond to environmental changes are moving into the marketplace, as are printed foods and biological tissues and organs. Beyond these technologies lies true molecular manufacturing wherein nanotools or nanobots produce themselves and manipulate raw materials in order to build products one atom at a time. Already there are wrenches, motors, and light-powered submarines being produced that consist of only a few atoms, but are powerful enough do work on small molecules or individual atoms.


Additive Manufacturing International Space Station Selective Laser Sinter Electronic Beam Melting Fuse Deposition Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. SE Bakarich, R Gorkin, M in het Panhuis, and GM Spinks. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels. Macromolecular Rapid Communications 36(12); 1211-1217, 2015. doi: 10.1002/marc.201500079.
  2. LE Bertassoni, M Cecconi, V Manoharan, J Hjortnaes, AL Cristino, G Barabaschi, D Demarchi, MR Dokmeci, Y Yang, and A Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13): 2202-2211, 2014. doi:  10.1039/c4Ic00030g.!divAbstract
  3. L Bindi, P Steinhardt, N Yao, and P Lu. Natural quasicrystals. Science 324(5932): 1306-1309, 2009. doi:  10.1126/science.1170827.
  4. L Bindi, N Yao, C Lin, LS Hollister, CL Andronicos, VV Distler, MP Eddy, A Kosin, V Kryachko, GJ MacPherson, WM Steinhardt, M Yudoskaya, and PJ Steinhardt. Natural quasicrystal with decagonal symmetry. Scientific Reports 5; 9111, 2015. doi:  10.1038/srep09111.
  5. M Bobnar, P Jeglic, M Klanjsek, Z Jaglicic, M Wencka, P Popcevic, J Ivkov, D Stanic, A Smontara, P Gille, and J Dolinsek. Intrinsic anisotropic magnetic, electrical, and thermal transport porperties of d-Al-Co-Ni decagonal quasicrystals. Physcial Review B 85(2); 024205, 2012. doi:  10.1103/PhysRevB.85.02.024205.
  6. WR Browne, and BL Feringa. Making molecular machines work. Nature Nanotechnology 1; 25-35, 2006. doi:  10.1038/nnano.2006.45.
  7. O Custance, R Perez, and S Morita. Atomic force microscopy as a tool for atom manipulation. Nature Nanotechnology 4; 803-810, 2009. doi:  10.1038/nnano.2009.347.
  8. M Fessenden. 3-D printed windpipe gives infant breath of life. Scientific American Online. May 24, 2013. Accessed 09/12/15.
  9. R Feynman. There’s plenty of room at the bottom. Caltech Engineering and Science 23(5): 22-36, 1960.
  10. JE Fischer. Storing energy in carbon nanotubes. Chemical Innovation 30(10); 21-27, 2000.
  11. TC Fitzgibbons, M Guthrie, E Xu, VH Crespi, SK Davidowski, GD Cody, N Alem, and JV Badding. Benzene-derived carbon nanothreads. Nature Materials 14; 43-47, 2015. doi:  10.1038/nmat4088.
  12. T Frey. The coming food printer revolution. FuturistSpeaker Blog, October, 17 2011. Accessed November 20, 2015.
  13. V García-López, PT Chiang, F Chen, G Ruan, AA Martí, AB Kolomeisky, G Wang, and JM Tour. Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring. Nano Letters. November 5, 2015. Epub ahead of print doi:  10.1021/acs.nanolett.5b03764.
  14. Q Ge, HJ Qi, and ML Dunn. Active Materials by four-dimension printing. Applied Physics Letters 103; 131901, 2013. doi:  10.1063/1.4819837.
  15. TJ Hinton, Q Jallerat, RN Palchesko, JH Park, MS Grodzicki, HJ Shie, MH Ramadan, AR Hudson, and AW Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9); e1500758, 2015. doi:  10.1126/sciadv.1500758.
  16. Z Izadifar, T Chang, AM Kulyk, D Chen, and BF Eames. Analyzing biologicalperformance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods Nov. 23, 2015 (Epub ahead of print) doi: 10.1089/ten.TEC.2015.0307.
  17. S Jesse, Q He, AR Lupini, DN Leonard, MP Oxley, O Ovchinnikov, RR Unocic, A Tselev, M Fuentes-Cabrera, BG Sumpter, SJ Pennycook, SV Kalinin, and AY Borisevich. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small 11(44); 5895-5900, 2015. doi:  10.1002/smll.201502048.
  18. H-W Kang, SJ Lee, IK Ko, C Kengla, JJ Yoo, and A Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology Published online February 15, 2016. doi:  10.1038/nbt.3413.
  19. S Kawai, AS Foster, FF Canova, H Onodera, S Kitamura, and E Meyer. Atom manipulation on an insulating surface at room temperature. Nature Communications 5; 4403, 2014. doi:  10.1038/ncomms5403.
  20. DB Kolesky, RL Truby, AS Gladman, TA Busbee, KA Homan, and JA Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19); 3124-3130, 2014. doi:  10.1002/adma.201305506.;jsessionid=569053B40DB17B11847A93900790129D.f02t03
  21. A Koptyug, LE Rannar, M Backstrom, and R Langlet. Bulk metallic glass manufacturing using electron beam melting. In: Proceedings from Additive Manufacturing & 3D Printing, Nottingham, UK, July 2013, Nottingham, UK, 2013.Google Scholar
  22. T Kudernac, N Ruangsupapichat, M Parschau, B Maciá, N Katsonis, SR Harutyunyan, KH Ernst, and BL Feringa. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479 (7372); 208, 2011. doi:  10.1038/nature10587.
  23. M Liu, VI Artyukhov, H Lee, F Xu, and BI Yakobson. Carbyne From First Principles: Chain of C atoms, a Nanorod or a Nanorope. ACS Nano 7(11); 10075 – 10082, 2013. doi:  10.1021/nn404177r.
  24. X Liu, ZJ Weinert, M Sharafi, C Liao, J Li, and ST Schneebeli. Regulating Molecular Recognition with C-Shaped Strips Attained by Chirality-Assisted Synthesis. Angewandte Chemie International Edition, 54(43); 12772-12776, 2015. doi:  10.1002/anie.201506793.
  25. ZP, Lu, CT Liu, JR Thompson, and WD Porter. Structural amorphous steels. Physical Review Letters 92; 245503, 2004. doi:  10.1103/PhysRevLett.92.245503.
  26. JF Morin, Y Shiarai, and JM Tour. En route to a motorized nanocar. Org Lett. 8(8); 1713-6, 2006. doi:  10.1021/ol060445d.
  27. D Oberhaus. Quasicrystals are nature’s impossible matter. Motherboard May 3, 2015. Accessed 11/04/15.
  28. J Paek, I Cho, and J Kim. Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. Scientific Reports, 5; 10768, 2015. doi:  10.1038/srep10768.
  29. K Pearson. Voice recognition search engine connected to 3D printer by Yahoo! Japan. MakerFlux, The Open Maker Community, September 19, 2013. Accessed 10/14/15.
  30. Z Peng, J Lin, R Ye, ELG Samuel, and JM Tour. Flexible and stackable laser induced graphene supercapacitors. Applied Materials and Interfaces 7(5); 3414-3419, 2015a. doi:  10.1021/am509065d.
  31. Z Peng, J Lin, R Ye, JA Mann, D Zakhidov, Y Li, PR Smalley, J Lin, and JM Tour. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6); 5868-5875, 2015b.
  32. M Schroeder. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: WH Freeman, 1991.Google Scholar
  33. BH Shin, SM Felton, MT Tolley, and RJ Wood. Self-Assembling Sensors for Printable Machines. IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31 – June 7, 2014.
  34. Y Shirai, AJ Osgood, Y Zhao, KF Kelly, and JM Tour. Directional control in thermally driven single-molecule nanocars. Nano Lett 5(11); 2330-4, 2005. doi:  10.1021/nl051915k.
  35. JA Stroscio, F Tavazza, JA Crain, RJ Celotta, and AM Chaka. Electronically induced atom motion in engineered CoCu nanostructures. Science 313 (5789); 948-951, 2006. doi:  10.1126/science.1129788.
  36. N Sugiyama, HY Xu, T Onoki, Y Hoshikawa, T Watanabe, N Matsushita, X Wang, FX Qin, M Fukuhara, M Tsukamoto, N Abe, Y Komizo, A Inoue, and M Yoshimura. Biocative titante nanomesh layer on Ti-based bulk metallic glass by hydrothermal-electrochemical technique. Acta Biomaterialia 5(4); 1367-1373, 2009. doi:  10.1016/j.actbio.2008.10.014.
  37. I Williams, EC Oğuz, T Speck, P Bartlett, H Löwen, and CP Royall. Transmission of torque at the nanoscale. Nature Physics 12; 98-103, 2016. doi:  10.1038/nphys3490.
  38. R Ye, Z Peng, T Wang, Y Xu, J Zhang, Y Li, LG Nilewski, J Lin, and JM Tour. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 9(9); 9244-9251, 2015. doi:  10.1021/acsnano.5b04138.
  39. L Zhang, X Wang, W Xu, Y Zhang, Q Li, PD Bradford, and Y Zhu. Strong and Conductive Dry Carbon Nanotube Films by Microcombing. Small, 11(31); 3830-3836, 2015. doi:  10.1002/smll.201500111.
  40. DA Zopf, SJ Hollister, ME Nelson, RG Ohye, and GE Green. Bioresorbable airway splint created with a three-dimensional printer. New Engl J Med 368; 2043-2045, 2013. doi:  10.1056/NEJMx1206319.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.IndianapolisUSA

Personalised recommendations