Advertisement

An Implicit Gradient Meshfree Formulation for Convection-Dominated Problems

  • M. Hillman
  • J. S. Chen
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Meshfree approximations are ideal for the gradient-type stabilized Petrov–Galerkin methods used for solving Eulerian conservation laws due to their ability to achieve arbitrary smoothness, however, the gradient terms are computationally demanding for meshfree methods. To address this issue, a stabilization technique that avoids high order differentiation of meshfree shape functions is introduced by employing implicit gradients under the reproducing kernel approximation framework. The modification to the standard approximation introduces virtually no additional computational cost, and its implementation is simple. The effectiveness of the proposed method is demonstrated in several benchmark problems.

Keywords

Convection-dominated problems reproducing kernel particle method stabilization implicit gradients 

Notes

Acknowledgements

The support of this work by US Army Engineer Research and Development Center under contract W912HZ-07-C-0019 is greatly acknowledged.

References

  1. 1.
    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hughes, T.J.R.: Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Franca, L.P., Farhat, C.: Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123, 299–308 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96, 117–129 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Baiocchi, C., Brezzi, F., Franca, L.P.: Virtual bubbles and Galerkin-least-squares type methods (Ga. LS). Comput. Methods Appl. Mech. Eng. 105, 125–141 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Günther, F., Liu, W.K., Diachin, D., Christon, M.A.: Multi-scale meshfree parallel computations for viscous, compressible flows. Comput. Methods Appl. Mech. Eng. 190, 279–303 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fries, T.P., Matthies, H.G.: A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations—part I: Stabilization. Comput. Methods Appl. Mech. Eng. 195, 6205–6224 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fries, T.P., Matthies, H.G.: A stabilized and coupled meshfree/meshbased method for the incompressible Navier–Stokes equations—Part II: Coupling. Comput. Methods Appl. Mech. Eng. 195, 6191–6204 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Huerta, A., Fernández‐Méndez, S.: Time accurate consistently stabilized mesh‐free methods for convection dominated problems. Int. J. Numer. Methods Eng. 56, 1225–1242 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Chi, S.W., Chen, J.S., Hu, H.Y., Yang, J.P.: A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Methods Eng. 93, 1381–1402 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity. Part I: Formulation and theory. Int. J. Numer. Methods Eng. 45, 251–288 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, S., Liu, W.K.: Reproducing kernel hierarchical partition of unity. Part II: Applications. Int. J. Numer. Methods Eng. 45, 289–317 (1999)CrossRefGoogle Scholar
  17. 17.
    Chen, J.S., Zhang, X., Belytschko, T.: An implicit gradient model by a reproducing kernel strain regularization in strain localization problems. Comput. Methods Appl. Mech. Eng. 193, 2827–2844 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 20, 1081–1106 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.: Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput. Methods Appl. Mech. Eng. 139, 195–227 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dolbow, J., Belytschko, T.: Numerical integration of the Galerkin weak form in meshfree methods. Comput. Mech. 23, 219–230 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Beissel, S., Belytschko, T.: Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, J.S., Wu, C.T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-fee methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, J.S., Hu, W., Puso, M.: Orbital HP-clouds for solving Schrödinger equation in quantum mechanics. Comput. Methods Appl. Mech. Eng. 196, 3693–3705 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Structural EngineeringUniversity of CaliforniaLa JollaUSA

Personalised recommendations