Advertisement

A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta

  • Hiroshi SuitoEmail author
  • Kenji Takizawa
  • Viet Q. H. Huynh
  • Daniel Sze
  • Takuya Ueda
  • Tayfun E. Tezduyar
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter is on fluid–structure interaction (FSI) analysis of blood flow in the thoracic aorta. The FSI is handled with the Sequentially Coupled Arterial FSI technique. We focus on the relationship between the aorta centerline geometry and the wall shear stress (WSS) distribution. The model centerlines are extracted from the CT scans, and we assume a constant diameter for the artery segment. Then, torsion-free model geometries are generated by projecting the original centerline to its averaged plane of curvature. The WSS distributions for the original and projected geometries are compared to examine the influence of the torsion.

Keywords

Wall Shear Stress Aortic Arch High Wall Shear Stress Rupture Risk Wall Shear Stress Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the JST-CREST Mathematics program. The authors thank Dr. Ryo Torii (University College London) for providing the observed data for the pressure profile in the aorta.

References

  1. 1.
    Isselbacher, E.M.: Thoracic and abdominal aortic aneurysms. Circulation 111, 816–828 (2005)CrossRefGoogle Scholar
  2. 2.
    Elefteriades, J.A.: Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann. Thorac. Surg. 74, S1877–S1880 (2002)CrossRefGoogle Scholar
  3. 3.
    Davies, R.R., Goldstein, L.J., Coady, M.A., Tittle, S.L., Rizzo, J.A., Kopf, G.S., Elefteriades, J.A.: Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann. Thorac. Surg. 73, 17–28 (2002)CrossRefGoogle Scholar
  4. 4.
    Tezduyar, T.E., Sathe, S., Schwaab, M., Conklin, B.S.: Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int. J. Numer. Methods Fluids 57, 601–629 (2008). doi:10.1002/fld.1633MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tezduyar, T.E., Schwaab, M., Sathe, S.: Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput. Methods Appl. Mech. Eng. 198, 3524–3533 (2009). doi:10.1016/j.cma.2008.05.024MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Tezduyar, T.E., Takizawa, K., Moorman, C., Wright, S., Christopher, J.: Multiscale sequentially-coupled arterial FSI technique. Comput. Mech. 46, 17–29 (2010). doi:10.1007/s00466-009-0423-2MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tezduyar, T.E., Takizawa, K., Brummer, T., Chen, P.R.: Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27, 1665–1710 (2011). doi:10.1002/cnm.1433MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Takizawa, K., Bazilevs, Y., Tezduyar, T.E.: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch. Comput. Methods Eng. 19, 171–225 (2012). doi:10.1007/s11831-012-9071-3MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester (2013). ISBN 978-0470978771CrossRefzbMATHGoogle Scholar
  10. 10.
    Takizawa, K., Tezduyar, T.E.: Multiscale space–time fluid–structure interaction techniques. Comput. Mech. 48, 247–267 (2011). doi:10.1007/s00466-011-0571-zMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Takizawa, K., Tezduyar, T.E.: Space–time fluid–structure interaction methods. Math. Models Methods Appl. Sci. 22, 1230001 (2012). doi:10.1142/S0218202512300013MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L., Schjodt, K.: ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Models Methods Appl. Sci. 24, 2437–2486 (2014). doi:10.1142/S0218202514500250MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Takizawa, K.: Computational engineering analysis with the new-generation space–time methods. Comput. Mech. 54, 193–211 (2014). doi:10.1007/s00466-014-0999-zMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992). doi:10.1016/S0065-2156(08)70153-4MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94, 339–351 (1992). doi:10.1016/0045-7825(92)90059-SMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94, 353–371 (1992). doi:10.1016/0045-7825(92)90060-WGoogle Scholar
  17. 17.
    Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003). doi:10.1002/fld.505MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tezduyar, T.E., Sathe, S.: Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int. J. Numer. Methods Fluids 54, 855–900 (2007). doi:10.1002/fld.1430MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hughes, T.J.R.: Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tezduyar, T., Aliabadi, S., Behr, M., Johnson, A., Mittal, S.: Parallel finite-element computation of 3D flows. Computer 26, 27–36 (1993). doi:10.1109/2.237441CrossRefzbMATHGoogle Scholar
  22. 22.
    Johnson, A.A., Tezduyar, T.E.: Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 119, 73–94 (1994). doi:10.1016/0045-7825(94)00077-8CrossRefzbMATHGoogle Scholar
  23. 23.
    Tezduyar, T.E.: Finite element methods for flow problems with moving boundaries and interfaces. Arch. Comput. Methods Eng. 8, 83–130 (2001). doi:10.1007/BF02897870CrossRefzbMATHGoogle Scholar
  24. 24.
    Takizawa, K., Henicke, B., Puntel, A., Kostov, N., Tezduyar, T.E.: Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput. Mech. 50, 743–760 (2012). doi:10.1007/s00466-012-0759-xCrossRefzbMATHGoogle Scholar
  25. 25.
    Takizawa, K., Tezduyar, T.E., Boben, J., Kostov, N., Boswell, C., Buscher, A.: Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity. Comput. Mech. 52, 1351–1364 (2013). doi:10.1007/s00466-013-0880-5CrossRefzbMATHGoogle Scholar
  26. 26.
    Takizawa, K., Tezduyar, T.E., Buscher, A., Asada, S.: Space–time interface-tracking with topology change (ST-TC). Comput. Mech. 54, 955–971 (2014). doi:10.1007/s00466-013-0935-7MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.-C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space–time methods. Arch. Comput. Methods Eng. 21, 481–508 (2014). doi:10.1007/s11831-014-9113-0MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takizawa, K., Tezduyar, T.E., Buscher, A., Asada, S.: Space–time fluid mechanics computation of heart valve models. Comput. Mech. 54, 973–986 (2014). doi:10.1007/s00466-014-1046-9MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Takizawa, K., Tezduyar, T.E., Buscher, A.: Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput. Mech. 55, 1131–1141 (2015). doi:10.1007/s00466-014-1095-0CrossRefGoogle Scholar
  30. 30.
    Takizawa, K., Brummer, T., Tezduyar, T.E., Chen, P.R.: A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J. Appl. Mech. 79, 010908 (2012). doi:10.1115/1.4005071CrossRefGoogle Scholar
  31. 31.
    Suito, H., Takizawa, K., Huynh, V.Q.H., Sze, D., Ueda, T.: FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta. Comput. Mech. 54, 1035–1045 (2014). doi:10.1007/s00466-014-1017-1CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hiroshi Suito
    • 1
    Email author
  • Kenji Takizawa
    • 2
  • Viet Q. H. Huynh
    • 1
  • Daniel Sze
    • 3
  • Takuya Ueda
    • 4
  • Tayfun E. Tezduyar
    • 5
  1. 1.Graduate School of Environmental and Life SciencesOkayama University and JST, CRESTOkayamaJapan
  2. 2.Department of Modern Mechanical EngineeringWaseda University and JST, CRESTShinjuku-kuJapan
  3. 3.Stanford University School of MedicineStanfordUSA
  4. 4.Department of RadiologySeikeikai Chiba Medical Center and JST, CRESTChibaJapan
  5. 5.Mechanical EngineeringRice UniversityHoustonUSA

Personalised recommendations