• Massimo ValentinoEmail author
  • Michele Bertolotto
  • Pezzetta Valdi
  • Libero Barozzi
  • Pietro Pavlica
  • Lorenzo Derchi


The mechanical properties of the living tissue can be evaluated with an imaging method defined as ultrasound elastography. This technique gives a visual representation of the tactile information usually provided by physical palpation of the tissue. It has opened new clinical applications of US providing complementary information to gray-scale and color Doppler ultrasound.


Shear Wave Benign Prostate Hyperplasia Color Doppler Ultrasound Acoustic Radiation Force Impulse Shear Wave Elastography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 50.1

Strain elastography of the prostate. The movie shows the normal pattern of the prostate. Using manual compression, it is possible to estimate the strain of the prostate. The information are reported on the display as a colored image on the B-mode image (AVI 138,249 kb)


  1. 1.
    Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134CrossRefPubMedGoogle Scholar
  2. 2.
    Varghese T, Ophir J (1997) A theoretical framework for performance characterization of elastography: the strain filter. IEEE Trans Ultrason Ferroelectr Freq Control 44:164–172CrossRefPubMedGoogle Scholar
  3. 3.
    Bamber JC, Barbone PE, Bush NL, Cosgrove DO, Doyely MM, Fueschsel FG, Meaney PM, Miller NR, Shiina T, Tranquart F (2002) Progress in freehand elastography of the breast. m E85D:5–14Google Scholar
  4. 4.
    Hall TJ, Zhu YN, Spalding CS (2003) In vivo real-time freehand palpation imaging. Ultrasound Med Biol 29:427–435CrossRefPubMedGoogle Scholar
  5. 5.
    Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, Matsumura T (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350CrossRefPubMedGoogle Scholar
  6. 6.
    Farrokh A, Wojcinski S, Degenhardt F (2011) Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions. Ultraschall Med 32:400–405CrossRefPubMedGoogle Scholar
  7. 7.
    Nightingale K, Palmeri M, Nightingale R, Trahey G (2001) On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am 110:625CrossRefPubMedGoogle Scholar
  8. 8.
    Fahey BJ, Nelson RC, Bradway DP et al (2008) In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 53:279–293CrossRefPubMedGoogle Scholar
  9. 9.
    Clevert DA, Stock K, Klein B, Slotta-Huspenina J, Prantl L, Heemann U et al (2009) Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc 43:95–107PubMedGoogle Scholar
  10. 10.
    Tan S, Ozcan MF, Tezcan F, Balci S, Karaoğlanoğlul M, Huddam B, Arslan H (2013) Real-time elastography for distinguishing angiomyolipoma from renal cell carcinoma: preliminary observations. AJR 200:W369–W375CrossRefPubMedGoogle Scholar
  11. 11.
    Ozycan F, Yavuz YC, Inci MF, Bulent A, Ozkan N, Yuksel M, Sayarlioglu H, Dogan E (2013) Interobserver variability of ultrasound elastography in transplant kidneys: correlation with clinical-Doppler parameters. Ultrasound Med Biol 39:4–9CrossRefGoogle Scholar
  12. 12.
    Bruno C, Caliari G, Zaffanello M, Brugnara M, Zuffante M, Cecchetto M, Minniti S, Pedot A, Talamini G, Pozzi-Mucelli R (2013) Acoustic radiation force impulse (ARFI) in the evaluation of renal parenchymal stiffness in paediatric patients with vescicoureteral reflux: preliminary results. Eur Radiol 23:3477–3484CrossRefPubMedGoogle Scholar
  13. 13.
    Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface/the Royal Soc 8:1521–1549CrossRefGoogle Scholar
  14. 14.
    Junker D, Schafer G, Aigner F et al (2012) Potentials and limitations of real-time elastography for prostate cancer detection: a whole-mount step section analysis. Scientific World Journal 2012:193213CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boehm K, Salomon G, Beyer B, Schiffmann J, Simonis K, Graefen M, Budaeus L (2015) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: implications for targeted biopsies and active surveillance protocols. J Urol 193:794–800CrossRefPubMedGoogle Scholar
  16. 16.
    Nygard Y, Haukaas SA, Halvorsen OJ et al (2014) A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int 113:E90–E97CrossRefPubMedGoogle Scholar
  17. 17.
    Goddi A, Sacchi A, Magistretti G et al (2012) Real-time tissue elastography for testicular lesion assessment. Eur Radiol 22(4):721–730CrossRefPubMedGoogle Scholar
  18. 18.
    Aigner F, De Zordo T, Pallwein-Prettner L, Junker D, Schäfer G, Pichler R, Leonhartsberger N, Pinggera G, Dogra VS, Frauscher F (2012) Real-time sonoelastography for the evaluation of testicular lesions. Radiology 263:584–589CrossRefPubMedGoogle Scholar
  19. 19.
    Valentino M, Bertolotto M, Martino P, Barozzi L, Pavlica P (2014) Incidentally detection of non-palpable testicular nodules at scrotal ultrasound: what is new? Arch Ital Urol Androl 86:378–382CrossRefPubMedGoogle Scholar
  20. 20.
    Huang DY, Sidhu PS (2012) Focal testicular lesions: colour Doppler ultrasound, contrast-enhanced ultrasound and tissue elastography as adjuvants to the diagnosis. Br J Radiol 85(Spec No 1):S41–S53CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Riversi V, Tallis V, Trovatelli S et al (2012) Realtime-elastosonography of the penis in patients with Peyronies’ disease. Arch Ital Urol Androl 84:174–177PubMedGoogle Scholar
  22. 22.
    Richards G, Goldenberg E, Pek H, Gilbert BR (2014) Penile sonoelastography for the localization of a non-palpable, non-sonographically visualized lesion in a patient with penile curvature from Peyronie’s disease. J Sex Med 1:516–520CrossRefGoogle Scholar
  23. 23.
    Zhang JJ, Qiao XH, Gao F, Li F, Bai M, Zhang HP, Liu Y, Du LF, Xing JF (2015) A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography. Br J Radiol 88(1048):20140671CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Massimo Valentino
    • 1
    Email author
  • Michele Bertolotto
    • 2
  • Pezzetta Valdi
    • 1
  • Libero Barozzi
    • 3
  • Pietro Pavlica
    • 4
  • Lorenzo Derchi
    • 5
  1. 1.Tolmezzo hospitalTolmezzoItaly
  2. 2.Department of RadiologyUniversity of Trieste, Ospedale di CattinaraTriesteItaly
  3. 3.Radiology Unit, Casa di Cura Madre Fortunata TonioloBolognaItaly
  4. 4.GVM Care and ResearchVillalba HospitalBolognaItaly
  5. 5.Dicmi-RadiologiaUniversity of GenovaGenoaItaly

Personalised recommendations