Advertisement

Science in the Context of Climate Change Adaptation: Case Studies from the Peruvian Andes

  • Boris OrlowskyEmail author
  • Norina Andres
  • Nadine Salzmann
  • Christian Huggel
  • Christine Jurt
  • Luis Vicuña
  • Mario Rohrer
  • Pierluigi Calanca
  • Raphael Neukom
  • Fabian Drenkhan
Chapter

Abstract

Within the context of the Climate Change Adaptation Program (PACC), a number of scientific investigations on water resources, natural disasters and perceptions by local people highlight adaptation needs in the regions of Cusco and Apurímac in Peru, considering past, present-day and future climate conditions. This chapter compiles their findings and attempts a systematic evaluation with respect to their contributions to climate change adaptation. The studies consistently find aggravating water scarcity during the dry season (April to September) due to projected precipitation decreases and reduced storage capacity of shrinking glaciers. Impacts include below-capacity hydropower generation and increased crop failure risks. For natural disasters, database inconsistencies prevent a detection of trends. While the natural science studies have produced a new and more comprehensive understanding of the target regions, their implications for society have hardly been investigated anthropologically. One of the few social science studies emphasizes that climate change is only one out of many determinants of rural livelihoods in the target regions, which have not been addressed scientifically yet. We thereby find an imbalance of available scientific knowledge regarding natural vs. social sciences. Overcoming such imbalance would allow for a more comprehensive integration of scientific findings into design and implementation of adaptation measures within the local context.

Keywords

Science-practice interface Climate change Adaptation Andes Peru 

Notes

Acknowledgements

The Climate Change Adaptation Program (Programa de Adaptación al Cambio Climático, PACC) is funded by the Swiss Agency for Development and Cooperation (SDC) through the Global Program Climate Change. The authors acknowledge the work from the practice and science sides of PACC, on which this chapter is based. The practice side is led by the Swiss-Peruvian NGO HELVETAS Swiss Intercooperation together with its Peruvian partners Libélula and PREDES. The science side is supported by a Consortium of Swiss scientific institutions, including the universities of Zurich, Fribourg and Geneva, Meteodat, Agroscope and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), in close collaboration with universities in Cusco (UNSAAC) and Apurímac (UNAMBA).

References

  1. Andres, N., Vegas Galdos, F., Lavado Casimiro, W. S., & Zappa, M. (2014). Water resources and climate change impact modelling on a daily time scale in the Peruvian Andes. Hydrological Sciences Journal, 59(11), 2043–2059. doi: 10.1080/02626667.2013.862336.CrossRefGoogle Scholar
  2. Baraer, M., Mark, B. G., McKenzie, J. M., Condom, T., Bury, J. T., Huh, K.-I., Portocarrero, C., Gomez, J., & Rathay, S. (2012). Glacier recession and water resources in Peru’s Cordillera Blanca. Journal of Glaciology, 58(207), 134–150. doi: 10.3189/2012JoG11J186.CrossRefGoogle Scholar
  3. Bradley, R. S., Vuille, M., Diaz, H. F., & Vergara, W. (2006). Threats to water supplies in the tropical Andes. Science, 312, 1755–1756. doi: 10.1126/science.1128087.CrossRefGoogle Scholar
  4. Bury, J., Mark, B. G., Carey, M., Young, K. R., McKenzie, J. M., Baraer, M., French, A., & Polk, M. H. (2013). New geographies of water and climate change in Peru: Coupled natural and social transformations in the Santa River watershed. Annals of the Association of American Geographers, 103, 363–374. doi: 10.1080/00045608.2013.754665.CrossRefGoogle Scholar
  5. Casassa, G., López, P., Pouyaud, B., & Escobar, F. (2009). Detection of changes in glacial run-off in alpine basins: Examples from North America, the alps, central Asia and the Andes. Hydrological Processes, 23(1), 31–41. doi: 10.1002/hyp.7194.CrossRefGoogle Scholar
  6. Chevallier, P., Pouyaud, B., Suarez, W., & Condom, T. (2011). Climate change threats to environment in the tropical Andes: Glaciers and water resources. Regional Environmental Change, 11(1), 179–187. doi: 10.1007/s10113-010-0177-6.CrossRefGoogle Scholar
  7. COSUDE. (2013). Programa de Adaptacion Al Cambio Climatico Peru. Agencia Suiza para el Desarollo y la Cooperacion COSUDE, Lima. Accessed Nov 2015. http://www.cooperacionsuizaenperu.org.pe/images/documentos/cosude/publicaciones/publicaciones2/brochurepacc.pdf
  8. DDP. (2015). Reporte de Conflictos Sociales (Vol. 141). Lima: Defensoria del Pueblo.Google Scholar
  9. DesInventar. (2013). DesInventar: DesInventar – Inventory system of the effects of disasters. Corporación OSSA, Cali, Colombia. Accessed Nov 2014. http://desinventar.org
  10. Dilling, L., & Lemos, M. C. (2011). Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Global Environmental Change-Human and Policy Dimensions, 21, 680–689. doi: 10.1016/j.gloenvcha.2010.11.006.CrossRefGoogle Scholar
  11. Drenkhan, F., Carey, M., Huggel, C., Seidel, J., & Oré, M. T. (2015). The changing water cycle: Climatic and socioeconomic drivers of water-related changes in the Andes of Peru. Wiley Interdisciplinary Reviews: Water, 2(6), 715–733. doi: 10.1002/wat2.1105.CrossRefGoogle Scholar
  12. Flores Moreno, A., & Valdivia Corrales, G. (2012). Las Percepciones de La Poblacion Rural Campesina de La Microcuenca Huacrahuacho Sobre La Incidencia Del Cambio Climatico En Su Forma de Vida. Lima: PACC.Google Scholar
  13. Fussel, H. M. (2007). Adaptation planning for climate change: Concepts, assessment approaches, and key lessons. Sustainability Science, 2, 265–275. doi: 10.1007/s11625-007-0032-y.CrossRefGoogle Scholar
  14. Garreaud, R. D., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-day South American climate. Palaeogeography Palaeoclimatology Palaeoecology, 281, 180–195. doi: 10.1016/j.palaeo.2007.10.032.CrossRefGoogle Scholar
  15. Haeberli, W., Schaub, Y., & Huggel, C. (in press). Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology. Available on http://www.sciencedirect.com/science/article/pii/S0169555X16300381
  16. Hegger, D., Lamers, M., Van Zeijl-Rozema, A., & Dieperink, C. (2012). Conceptualising joint knowledge production in regional climate change adaptation projects: Success conditions and levers for action. Environmental Science & Policy, 18, 52–65. doi: 10.1016/j.envsci.2012.01.002.CrossRefGoogle Scholar
  17. Huggel, C., Raissig, A., Rohrer, M., Romero, G., Diaz, A., & Salzmann, N. (2015a). How useful and reliable are disaster databases in the context of climate and global change? A comparative case study analysis in Peru. Natural Hazards and Earth System Science, 15(3), 475–485. doi: 10.5194/nhess-15-475-2015.CrossRefGoogle Scholar
  18. Huggel, C., Scheel, M., Albrecht, F., Andres, N., Calanca, P., Jurt, C., Khabarov, N., et al. (2015b). A framework for the science contribution in climate adaptation: Experiences from science-policy processes in the Andes. Environmental Science & Policy, 47, 80–94. doi: 10.1016/j.envsci.2014.11.007.CrossRefGoogle Scholar
  19. INDECI. (2013). SINPAD – Sistema de Información Nacional Para La Respuesta Y Rehabilitación. Insituto Nacional de Defensa Civil, Lima. Accessed Nov 2014. http://sinpad.indeci.gob.pe
  20. INEI. (1995). III Censo Nacional Agropecuario 1994 – Cuadros Estadísticos. Lima: Instituto Nacional de Estadística e Informática. http://censos.inei.gob.pe/bcoCuadros/IIIcenagro.htm
  21. INEI. (2008). Censos Nacionales 2007: XI de Población Y VI de Vivienda. Perfil Sociodemográfico Del Perú. Lima: Instituto Nacional de Estadística e Informática.Google Scholar
  22. INEI. (2013). IV Censo Nacional Agropecuario 2012 – Cuadros Estadísticos. Lima: Instituto Nacional de Estadística e Informática. http://censos.inei.gob.pe/cenagro/tabulados/
  23. INEI. (2014). Evolucion de La Pobreza Monetaria 2009–2014. Lima: Instituto Nacional de Estadística e Informática. http://www.inei.gob.pe/media/cifras_de_pobreza/informetecnico_pobreza2014.pdf
  24. Kaser, G., Juen, I., Georges, C., Gómez, J., & Tamayo, W. (2003). The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Perú. Journal of Hydrology, 282(1–4), 130–144. doi: 10.1016/S0022-1694(03)00259-2.CrossRefGoogle Scholar
  25. Kaser, G., Grosshauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences of the United States of America, 107, 20223–20227. doi: 10.1073/pnas.1008162107.CrossRefGoogle Scholar
  26. Lemos, M. C., & Morehouse, B. J. (2005). The Co-production of science and policy in integrated climate assessments. Global Environmental Change-Human and Policy Dimensions, 15, 57–68. doi: 10.1016/j.gloenvcha.2004.09.004.CrossRefGoogle Scholar
  27. Lynch, B. D. (2012). Vulnerabilities, competition and rights in a context of climate change toward equitable water governance in Peru’s Rio Santa Valley. Global Environmental Change, 22(2), 364–373.CrossRefGoogle Scholar
  28. MINEM. (2014). Anuario Ejecutivo de Electricidad 2013. Lima: Ministerio de Energía y Minas.Google Scholar
  29. MINEM. (2015). Mapa de Proyectos Mineros. Lima: Ministerio de Energía y Minas. http://www.minem.gob.pe/minem/archivos/file/Mineria/PUBLICACIONES/MAPAS/2015/MAPA2015-2.pdf
  30. Minvielle, M., & Garreaud, R. D. (2011). Projecting rainfall changes over the South American Altiplano. Journal of Climate, 24(17), 4577–4583. doi: 10.1175/JCLI-D-11-00051.1.CrossRefGoogle Scholar
  31. Neukom, R., Rohrer, M., Calanca, P., Salzmann, N., Huggel, C., Acuña, D., Christie, D. A., & Morales, M. S. (2015). Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environmental Research Letters, 10(8), 084017. doi: 10.1088/1748-9326/10/8/084017.CrossRefGoogle Scholar
  32. OSINERGMIN. (2014). Central Hidroeléctrica Santa Teresa. Lima.Google Scholar
  33. Salzmann, N., Huggel, C., Rohrer, M., Silverio, W., Mark, B. G., Burns, P., & Portocarrero, C. (2013). Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. The Cryosphere, 7, 103–118. doi: 10.5194/tc-7-103-2013.CrossRefGoogle Scholar
  34. Sanabria, J., & Lhomme, J. P. (2013). Climate change and potato cropping in the Peruvian Altiplano. Theoretical and Applied Climatology, 112(3–4), 683–695. doi: 10.1007/s00704-012-0764-1.CrossRefGoogle Scholar
  35. Sanabria, J., Calanca, P., Alarcón, C., & Canchari, G. (2014). Potential impacts of early twenty-first century changes in temperature and precipitation on rainfed annual crops in the central Andes of Peru. Regional Environmental Change, 14(4), 1533–1548. doi: 10.1007/s10113-014-0595-y.CrossRefGoogle Scholar
  36. Schwarb, M., Acuña, D., Konzelmann, T., Rohrer, M., Salzmann, N., Serpa Lopez, B., & Silvestre, E. (2011). A data portal for regional climatic trend analysis in a Peruvian high Andes region. Advances in Science and Research, 6, 219–226. doi: 10.5194/asr-6-219-2011.CrossRefGoogle Scholar
  37. Sietz, D., Mamani Choque, S. E., & Lüdeke, M. (2012). Typical patterns of smallholder vulnerability to weather extremes with regard to food security in the Peruvian Altiplano. Regional Environmental Change, 12(3), 489–505.CrossRefGoogle Scholar
  38. Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research-Atmospheres 114 (January). doi: 10.1029/2008jd011021.
  39. Weichselgartner, J., & Kasperson, R. (2010). Barriers in the science-policy-practice interface: Toward a knowledge-action-system in global environmental change research. Global Environmental Change-Human and Policy Dimensions, 20, 266–277. doi: 10.1016/j.gloenvcha.2009.11.006.CrossRefGoogle Scholar
  40. Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., & Sutton, R. T. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology, 29, 1193–1215. doi: 10.1002/Joc.1839.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Boris Orlowsky
    • 1
    Email author
  • Norina Andres
    • 2
  • Nadine Salzmann
    • 1
    • 3
  • Christian Huggel
    • 1
  • Christine Jurt
    • 1
  • Luis Vicuña
    • 1
  • Mario Rohrer
    • 4
  • Pierluigi Calanca
    • 5
  • Raphael Neukom
    • 6
  • Fabian Drenkhan
    • 1
    • 7
  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland
  2. 2.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  3. 3.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  4. 4.Meteodat GmbHZurichSwitzerland
  5. 5.AgroscopeZurichSwitzerland
  6. 6.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland
  7. 7.Department of SciencesPontificia Universidad Católica del PerúLimaPeru

Personalised recommendations