Advertisement

Astrocyte Dysfunction in Developmental Neurometabolic Diseases

  • Silvia Olivera-Bravo
  • Eugenia Isasi
  • Anabel Fernández
  • Gabriela Casanova
  • Juan Carlos Rosillo
  • Luigi Barbeito
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 949)

Abstract

Astrocytes play crucial roles in maintaining brain homeostasis and in orchestrating neural development, all through tightly coordinated steps that cooperate to maintain the balance needed for normal development. Here, we review the alterations in astrocyte functions that contribute to a variety of developmental neurometabolic disorders and provide additional data on the predominant role of astrocyte dysfunction in the neurometabolic neurodegenerative disease glutaric acidemia type I. Finally, we describe some of the therapeutical approaches directed to neurometabolic diseases and discuss if astrocytes can be possible therapeutic targets for treating these disorders.

Keywords

Astrocytes Astrocyte dysfunction Neurodevelopmental diseases Neurodegeneration Myelin damage 

Abbreviations

ALS

Amyotrophic Lateral Sclerosis

AQP4

Aquaporin 4

BBB

Blood–Brain Barrier

GA

Glutaric Acid

GA-I

Glutaric Acidemia Type I

GCDH

Glutaryl CoA Dehydrogenase

GDNF

Glial-Derived Neurotrophic Factor

GFAP

Glial Fibrillary Acidic Protein

Icv

Intracerebroventricular

IEM

Inborn Errors of Metabolism

MAPK

Mitogen-Activated Protein Kinases

MLC

Megalencephalic Leukoencephalopathy with Subcortical Cysts

NPC

Niemann-Pick type C Disease

NVU

Neurovascular Unit

PC

Pyruvate Carboxylase

VWM

Vanishing White Matter

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53CrossRefPubMedGoogle Scholar
  2. Araque A (2008) Astrocytes process synaptic information. Neuron Glia Biol 4:3–10CrossRefPubMedGoogle Scholar
  3. Bähr O, Mader I, Zschocke J et al (2002) Adult onset glutaric aciduria type I presenting with a leukoencephalopathy. Neurology 59(11):1802–1804CrossRefPubMedGoogle Scholar
  4. Bain JM, Ziegler A, Yang Z et al (2010) TGFß1 stimulates the over-production of white matter astrocytes from precursors of the “brain marrow” in a rodent model of neonatal encephalopathy. PLoS ONE 5(3):e9567CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnabe-Heider F, Wasylnka JA, Fernandes KJL et al (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265CrossRefPubMedGoogle Scholar
  6. Barres BA, Schmid R, Sendnter M et al (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118(1):283–295PubMedGoogle Scholar
  7. Boor PK, de Groot K, Waisfisz Q et al (2005) MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol 64:412–419CrossRefPubMedGoogle Scholar
  8. Borbon I, Totenhagen J, Fiorenza MT et al (2012) Niemann-Pick C1 mice, a model of ‘‘juvenile Alzheimer’s disease’’, with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration. J Alzheimers Dis 30:875–887PubMedGoogle Scholar
  9. Brusilow SW, Koehler RC, Traystman RJ et al (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7(4):452–470CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bugiani M, Boor I, van Kollenburg B et al (2011) Defective glial maturation in vanishing white matter disease. J Neuropathol Exp Neurol 70:69–82CrossRefPubMedPubMedCentralGoogle Scholar
  11. Butterworth RF (2010) Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int 57:383–388CrossRefPubMedGoogle Scholar
  12. Cho W, Brenner M, Peters N et al (2010) Drug screening to identify suppressors of GFAP expression. Hum Mol Genet 19:3169–3178CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chung W-S, Clarke LE, Wang GX et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Keyser J, Mostert JP, Koch MW (2008) Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci 267:3–16CrossRefPubMedGoogle Scholar
  16. Dodla MC, Mumaw J, Stice SL (2010) Role of astrocytes, soluble factors, cells adhesion molecules and neurotrophins in functional synapse formation: implications for human embryonic stem cell derived neurons. Curr Stem Cell Res Ther 5:251–260CrossRefPubMedGoogle Scholar
  17. Duarri A, Lopez de Heredia M, Capdevila-Nortes X et al (2011) Knockdown of MLC1 in primary astrocytes causes cell vacuolation: a MLC disease cell model. Neurobiol Dis 43:228–238CrossRefPubMedGoogle Scholar
  18. Ehrenreich H, Weissenborn K, Prange H et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40(12):e647–656CrossRefPubMedGoogle Scholar
  19. Eroglu C, Allen NJ, Susman MW et al (2009) Gabapentin receptor alpha 2 delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392CrossRefPubMedPubMedCentralGoogle Scholar
  20. Freudenberg F, Lukacs Z, Ullrich K (2004) 3-Hydroxyglutaric acid fails to affect the viability of primary neuronal rat cells. Neurobiol Dis 16(3):581–584CrossRefPubMedGoogle Scholar
  21. Funk CB, Prasad AN, Frosk P et al (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128:711–722CrossRefPubMedGoogle Scholar
  22. Garcia-Cazorla A, Rabier D, Touati G et al (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59:121–127CrossRefPubMedGoogle Scholar
  23. Ge W-P, Miyawaki A, Gage FH et al (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–380CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goodman SI, Norenberg MD, Shikes RH et al (1977) Glutaric aciduria: biochemical and morphologic considerations. J Pediatr 90:746–750CrossRefPubMedGoogle Scholar
  25. Haberle J, Gorg B, Rutsch F et al (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–1933CrossRefPubMedGoogle Scholar
  26. Haberle J, Shahbeck N, Ibrahim K et al (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103(1):89–91CrossRefPubMedGoogle Scholar
  27. Hagemann TL, Boelens WC, Wawrousek EF et al (2009) Suppression of GFAP toxicity by αβ-crystallin in mouse models of Alexander disease. Hum Mol Genet 18(7):1190–1199CrossRefPubMedPubMedCentralGoogle Scholar
  28. Han X, Chen M, Wang F et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353CrossRefPubMedPubMedCentralGoogle Scholar
  29. Helmuth L (2001) Glia tell neurons to build synapses. Science 291:569–570CrossRefPubMedGoogle Scholar
  30. Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Investig 123:1299–1309CrossRefPubMedPubMedCentralGoogle Scholar
  31. Isasi E, Barbeito L, Olivera-Bravo S (2014) Increased blood–brain barrier permeability and alterations in perivascular astrocytes and pericytes induced by intracisternal glutaric acid. Fluids Barriers CNS 11:15CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jafari P, Braissant O, Zavadakova P et al (2013) Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I. PLoS ONE 8(1):e53735CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koeller DM, Woontner M, Crnic LS et al (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaricacidemia type I. Hum Mol Genet 11:347–357CrossRefPubMedGoogle Scholar
  34. Koeller DM, Sauer S, Wajner M et al (2004) Animal models for glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27:813–818CrossRefPubMedGoogle Scholar
  35. Kölker S, Boy SP, Heringer J et al (2012) Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I—a decade of experience. Mol Genet Metab 107(1–2):72–80CrossRefPubMedGoogle Scholar
  36. Lamp J, Keyser B, Koeller DM et al (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 286:17777–17784CrossRefPubMedPubMedCentralGoogle Scholar
  37. Liem RK, Messing A (2009) Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Investig 119:1814–1824CrossRefPubMedPubMedCentralGoogle Scholar
  38. Magni DV, Furian AF, Oliveira MS et al (2009) Kinetic characterization of l-[(3)H]glutamate uptake inhibition and increase oxidative damage induced by glutaric acid in striatal synaptosomes of rats. Int J Dev Neurosci 27:65–72CrossRefPubMedGoogle Scholar
  39. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689CrossRefPubMedGoogle Scholar
  40. Messing A, Brenner M, Feany MB et al (2012) Alexander disease. J Neurosci 32(15):5017–5032CrossRefPubMedPubMedCentralGoogle Scholar
  41. Miyajima H (2015) Aceruloplasminemia. Neuropathology 35:83–90CrossRefPubMedGoogle Scholar
  42. Nash B, Thomson CE, Linington C et al (2011) Functional duality of astrocytes in myelination. J Neurosci 31:13028–31308CrossRefPubMedGoogle Scholar
  43. Oide T, Yoshida K, Kaneko K et al (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32:170–176CrossRefPubMedGoogle Scholar
  44. Olivera-Bravo S, Fernández A, Latini A et al (2008) Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: possible implications for GAI pathogenesis. Neurobiol Dis 32:528–534CrossRefGoogle Scholar
  45. Olivera-Bravo S, Fernández A, Sarlabós MN et al (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of Glutaric Acidemia-I. PLoS ONE 6:e20831–20840CrossRefPubMedPubMedCentralGoogle Scholar
  46. Olivera-Bravo S, Isasi E, Fernández A et al (2014) White matter injury induced by perinatal exposure to glutaric acid. Neurotox Res 25:381–391CrossRefPubMedGoogle Scholar
  47. Patel SC, Suresh S, Kumar U et al (1999) Localization of Niemann-Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann-Pick type C disease. Proc Natl Acad Sci USA 96:1657–1662CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098CrossRefPubMedGoogle Scholar
  49. Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7(4):413–423CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ribas GZ, Vargas CR, Wajner M (2014) L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533:469–476CrossRefPubMedGoogle Scholar
  51. Ridder MC, Boor I, Lodder JC et al (2011) Megalencephalic leucoencephalopathy with cysts: defect in chloride currents and cell volume regulation. Brain 134:3342–3354CrossRefPubMedGoogle Scholar
  52. Robinson BH, Oei J, Sherwood WG et al (1984) The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 36:283–294PubMedPubMedCentralGoogle Scholar
  53. Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686CrossRefPubMedGoogle Scholar
  54. Ruiz Pons M, Sanchez-Valverde Visus F, Dalmau Serra J et al (2007) Nutritional treatment of inborn errors of metabolism, 1st edn. Ergon, MadridGoogle Scholar
  55. Saez JP, Orellana JA, Vega-Riveros N et al (2013) Disruption in connexin-based communication is associated with intracellular Ca2+ signal alterations in astrocytes from Niemann-Pick Type C mice. PLoS ONE 8(8):e71361CrossRefPubMedPubMedCentralGoogle Scholar
  56. Scriver CR, Beaudet AL, Sly WS, Valle D (1995) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  57. Seminotti B, da Rosa MS, Fernandes CG et al (2012) Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Mol Genet Metab 106:31–38CrossRefPubMedGoogle Scholar
  58. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81CrossRefPubMedPubMedCentralGoogle Scholar
  59. Strauss KA, Puffenberger EG, Robinson DL et al (2003) Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Gen Part C Semin Med Gen 121C:38–52CrossRefGoogle Scholar
  60. Strauss KA, Lazovic J, Wintermark M et al (2007) Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain 130:1905–1920CrossRefPubMedGoogle Scholar
  61. van der Knaap MS, Pronk JC, Scheper GC (2006) Vanishing white matter disease. Lancet Neurol 5:413–423CrossRefPubMedGoogle Scholar
  62. Vargas MR, Johnson JA (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7(4):471–481CrossRefPubMedPubMedCentralGoogle Scholar
  63. Verkhratsky A, Sofroniew MV, Messing A et al (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 5:4(3)Google Scholar
  64. Verkhratsky A, Nedergaard M, Hertz L (2015) Why are astrocytes important? Neurochem Res 40(2):389–401CrossRefPubMedGoogle Scholar
  65. Wu AS, Kiaei M, Aguirre N et al (2003) Iron porphyrin treatment extends survival in a transgenic animal model of amyotrophic lateral sclerosis. J Neurochem 85:142–150CrossRefPubMedGoogle Scholar
  66. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7(4):439–451CrossRefPubMedGoogle Scholar
  67. Zinnanti WJ, Lazovic J, Housman C et al (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117:3258–3270CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Silvia Olivera-Bravo
    • 1
  • Eugenia Isasi
    • 1
  • Anabel Fernández
    • 2
  • Gabriela Casanova
    • 3
  • Juan Carlos Rosillo
    • 4
  • Luigi Barbeito
    • 5
  1. 1.Cellular and Molecular NeurobiologyInstituto de Investigaciones Biológicas Clemente Estable (IIBCE)MontevideoUruguay
  2. 2.Neuroscience Division, IIBCE and Comparative Neuroanatomy-Associated Unit to the School of SciencesUDELARMontevideoUruguay
  3. 3.UMET, School of SciencesUDELARMontevideoUruguay
  4. 4.Neuroscience Division IIBCEUDELARMontevideoUruguay
  5. 5.Neurodegeneration LaboratoryInstitut Pasteur MontevideoMontevideoUruguay

Personalised recommendations