Tyrosine Metabolism for Insect Cuticle Pigmentation and Sclerotization

  • Yasuyuki ArakaneEmail author
  • Mi Young Noh
  • Tsunaki Asano
  • Karl J. Kramer


Pigmentation or body color patterns in insects quite often differ not only between species but also in different stages of development and in different body regions of a single species. Body coloration plays physiologically and ecologically important roles as for instance in species recognition and communication, courtship/mate selection, mimicry, crypsis, warning, prey-predator/parasite interactions, and resistance to temperature, desiccation and absorbs or reflects harmful ultraviolet radiation. Many kinds of pigment molecules and structural colors contribute to the diversity of body coloration in insects. Recent studies have elucidated some of the genetic and molecular biological mechanisms underlying pigment biosynthesis. This chapter focuses on the pigments derived from the amino acid tyrosine. The tyrosine-mediated cuticle tanning pathway is responsible for production of melanins and other pigments derived from 3,4-dihydroxyphenylalanine (DOPA) and dopamine as well as from N-acyldopamines. The N-acylated dopamines, in addition, are oxidized by the phenoloxidase laccase 2 to form quinones and quinone methides, which then undergo cross-linking reactions with cuticular proteins (CPs) for cuticle sclerotization. We review the regulation and functional importance and also the diversity of the genes involved in this pathway. The unique localization and cross-linking of specific CPs for morphology and ultrastructure of the exoskeleton are also discussed.


Tyrosine Hydroxylase JHJuvenile Hormone Body Color Tribolium Castaneum Yellow Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (NRF-2015R1A2A2A01006614), Bio-industry Technology Development Program (111107011SB010), Ministry for Food, Agriculture, Forestry and Fisheries, and Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2015R1A6A3A04060323) to MYN.


  1. Albert S, Klaudiny J (2004) The MRJP/YELLOW protein family of Apis mellifera: identification of new members in the EST library. J Insect Physiol 50:51–59PubMedCrossRefGoogle Scholar
  2. Amherd R, Hintermann E, Walz D, Affolter M, Meyer UA (2000) Purification, cloning, and characterization of a second arylalkylamine N-acetyltransferase from Drosophila melanogaster. DNA Cell Biol 19:697–705PubMedCrossRefGoogle Scholar
  3. An S, Wang S, Gilbert LI, Beerntsen B, Ellersieck M, Song Q (2008) Global identification of bursicon-regulated genes in Drosophila melanogaster. BMC Genomics 9:424PubMedPubMedCentralCrossRefGoogle Scholar
  4. An S, Wang S, Stanley D, Song Q (2009) Identification of a novel bursicon-regulated transcriptional regulator, md13379, in the house fly Musca domestica. Arch Insect Biochem Physiol 70:106–121PubMedCrossRefGoogle Scholar
  5. Andersen SO (1974) Evidence for two mechanisms of sclerotisation in insect cuticle. Nature 251:507–508PubMedCrossRefGoogle Scholar
  6. Andersen SO (1978) Characterization of a trypsin-solubilized phenoloxidase from locust cuticle. Insect Biochem 8:143–148CrossRefGoogle Scholar
  7. Andersen SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem Mol Biol 30:569–577PubMedCrossRefGoogle Scholar
  8. Andersen SO (2005) Cuticular sclerotization and tanning. In: Gibert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier-Pergamon Press, Oxford, pp 145–170CrossRefGoogle Scholar
  9. Andersen SO (2007) Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization. Insect Biochem Mol Biol 37:969–974PubMedCrossRefGoogle Scholar
  10. Andersen SO (2008) Quantitative determination of catecholic degradation products from insect sclerotized cuticles. Insect Biochem Mol Biol 38:877–882PubMedCrossRefGoogle Scholar
  11. Andersen SO (2010) Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40:166–178PubMedCrossRefGoogle Scholar
  12. Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci U S A 102:11337–11342PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev 125:984–995PubMedCrossRefGoogle Scholar
  14. Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR, Kramer KJ (2009) Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum. J Biol Chem 284:16584–16594PubMedPubMedCentralCrossRefGoogle Scholar
  15. Arakane Y, Dittmer NT, Tomoyasu Y, Kramer KJ, Muthukrishnan S, Beeman RW, Kanost MR (2010) Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochem Mol Biol 40:259–266PubMedCrossRefGoogle Scholar
  16. Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, Beeman RW, Kramer KJ, Kanost MR (2012) Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins. PLoS Genet 8, e1002682PubMedPubMedCentralCrossRefGoogle Scholar
  17. Arendt J, Deacon S, English J, Hampton S, Morgan L (1995) Melatonin and adjustment to phase shift. J Sleep Res 4:74–79PubMedCrossRefGoogle Scholar
  18. Asano T, Ashida M (2001) Cuticular pro-phenoloxidase of the silkworm, Bombyx mori Purification and demonstration of its transport from hemolymph. J Biol Chem 276:11100–11112PubMedCrossRefGoogle Scholar
  19. Asano T, Taoka M, Yamauchi Y, Craig Everroad R, Seto Y, Isobe T, Kamo M, Chosa N (2014) Re-examination of a alpha-chymotrypsin-solubilized laccase in the pupal cuticle of the silkworm, Bombyx mori: insights into the regulation system for laccase activation during the ecdysis process. Insect Biochem Mol Biol 55C:61–69CrossRefGoogle Scholar
  20. Ashida M, Brey PT (1995) Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix. Proc Natl Acad Sci U S A 92:10698–10702PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ashida M, Brey PT (1997) Recent advances in research on the insect prophenoloxidase cascade. In: Brey PT, Hultmark D (eds) Molecular mechanisms of immune responses in insects. Chapman & Hall, New York, pp 135–172Google Scholar
  22. Ashida M, Yamazaki HI (1990) Biochemistry of the phenoloxidase system in insects: with special reference to its activation. In: Ohnishi E, Ishizaki E (eds) Molting and metamorphosis. Japan Scientific Societies Press, Tokyo, pp 239–265Google Scholar
  23. Aust S, Brusselbach F, Putz S, Hovemann BT (2010) Alternative tasks of Drosophila tan in neurotransmitter recycling versus cuticle sclerotization disclosed by kinetic properties. J Biol Chem 285:20740–20747PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bai H, Palli SR (2010) Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi. Dev Biol 344:248–258PubMedPubMedCentralCrossRefGoogle Scholar
  25. Baker JD, Truman JW (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol 205:2555–2565PubMedGoogle Scholar
  26. Barbera M, Mengual B, Collantes-Alegre JM, Cortes T, Gonzalez A, Martinez-Torres D (2013) Identification, characterization and analysis of expression of genes encoding arylalkylamine N-acetyltransferases in the pea aphid Acyrthosiphon pisum. Insect Mol Biol 22:623–634PubMedCrossRefGoogle Scholar
  27. Barredo JL, van Solingen P, Diez B, Alvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MA, Veenstra AE, Martin JF (1989) Cloning and characterization of the acyl-coenzyme A: 6-aminopenicillanic-acid-acyltransferase gene of Penicillium chrysogenum. Gene 83:291–300PubMedCrossRefGoogle Scholar
  28. Barrett FM (1987a) Characterization of phenoloxidases from larval cuticle of Sarcophaga bullata and a comparison with cuticular enzymes from other species. Can J Zool 65:1158–1166CrossRefGoogle Scholar
  29. Barrett FM (1987b) Phenoloxidases from larval cuticle of the sheep blowfly, Lucilia cuprina: characterization, developmental changes, and inhibition by anti-phenoloxidase antibodies. Arch Insect Biochem Physiol 5:99–118CrossRefGoogle Scholar
  30. Barrett FM (1991) Phenoloxidases and the integument. In: Binnington K, Retnakaron A (eds) Physiology of the insect epidermis. CSIRO Publications, East Melbourne, pp 195–212Google Scholar
  31. Barrett FM, Andersen SO (1981) Phenoloxidases in larval cuticle of the blowfly, Calliphora vicina. Insect Biochem 11:17–23CrossRefGoogle Scholar
  32. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326PubMedCrossRefGoogle Scholar
  33. Bembenek J, Sehadova H, Ichihara N, Takeda M (2005) Day/night fluctuations in melatonin content, arylalkylamine N-acetyltransferase activity and NAT mRNA expression in the CNS, peripheral tissues and hemolymph of the cockroach, Periplaneta americana. Comp Biochem Physiol B 140:27–36PubMedCrossRefGoogle Scholar
  34. Birman S, Morgan B, Anzivino M, Hirsh J (1994) A novel and major isoform of tyrosine hydroxylase in Drosophila is generated by alternative RNA processing. J Biol Chem 269:26559–26567PubMedGoogle Scholar
  35. Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan J, Uffman J, Wiggins E, Heck G, Segers G (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7, e47534PubMedPubMedCentralCrossRefGoogle Scholar
  36. Bridges CB, Morgan TH (1923) The third-chromosome group of mutant characters of Drosophila melanogaster. Carnegie Institution of Washington, WashingtonCrossRefGoogle Scholar
  37. Brodbeck D, Amherd R, Callaerts P, Hintermann E, Meyer UA, Affolter M (1998) Molecular and biochemical characterization of the aaNAT1 (Dat) locus in Drosophila melanogaster: differential expression of two gene products. DNA Cell Biol 17:621–633PubMedCrossRefGoogle Scholar
  38. Bückmann D, Maisch A (1987) Extraction and partial purification of the pupal melanization reducing factor (PMRF) from Inachis io (Lepidoptera). Insect Biochem 17:841–844CrossRefGoogle Scholar
  39. Budnik V, White K (1987) Genetic dissection of dopamine and serotonin synthesis in the nervous system of Drosophila melanogaster. J Neurogenet 4:309–314PubMedCrossRefGoogle Scholar
  40. Buttstedt A, Moritz RF, Erler S (2014) Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol Rev Camb Philos Soc 89:255–269PubMedCrossRefGoogle Scholar
  41. Chatterjee S, Prados-Rosales R, Itin B, Casadevall A, Stark RE (2015) Solid-state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal eumelanins in the cell wall. J Biol Chem 290:13779–13790PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chen J, Wu G (2013) Beetle forewings: epitome of the optimal design for lightweight composite materials. Carbohydr Polym 91:659–665PubMedCrossRefGoogle Scholar
  43. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Zhang W (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:777–786PubMedCrossRefGoogle Scholar
  44. Chen J, Xie J, Zhu H, Guan S, Wu G, Noori MN, Guo S (2012) Integrated honeycomb structure of a beetle forewing and its imitation. Mater Sci Eng C Mater Biol Appl 32:613–618CrossRefGoogle Scholar
  45. Chen J, Xie J, Wu Z, Elbashiry EM, Lu Y (2015a) Review of beetle forewing structures and their biomimetic applications in China: (I) On the structural colors and the vertical and horizontal cross-sectional structures. Mater Sci Eng C 55:605–619CrossRefGoogle Scholar
  46. Chen J, Zu Q, Wu G, Xie J, Tuo W (2015b) Review of beetle forewing structures and their biomimetic applications in China: (II) On the three-dimensional structure, modeling and imitation. Mater Sci Eng C 55:620–633CrossRefGoogle Scholar
  47. Cheng L, Wang LY, Karlsson AM (2008) Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. J Mater Res 23:2854–2872CrossRefGoogle Scholar
  48. Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199PubMedCrossRefGoogle Scholar
  49. Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, Willis JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics 9:22PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cromartie RIT (1959) Insect pigments. Annu Rev Entomol 4:59–76CrossRefGoogle Scholar
  51. Curtis AT, Hori M, Green JM, Wolfgang WJ, Hiruma K, Riddiford LM (1984) Ecdysteroid regulation of the onset of cuticular melanization in allatectomized and black mutant Manduca sexta larvae. J Insect Physiol 30:597–606CrossRefGoogle Scholar
  52. Czapla TH, Hopkins TL, Kramer KJ (1990) Cuticular strength and pigmentation of five strains of adult Blattella germanica (L.) during sclerotization: correlations with catecholamines, β-alanine and food deprivation. J Insect Physiol 6:647–654CrossRefGoogle Scholar
  53. Dai ZD, Yang ZX (2010) Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. J Bionic Eng 7:6–12CrossRefGoogle Scholar
  54. Dai F, Qiao L, Tong XL, Cao C, Chen P, Chen J, Lu C, Xiang ZH (2010) Mutations of an arylalkylamine-N-acetyltransferase, Bm-iAANAT, are responsible for silkworm melanism mutant. J Biol Chem 285:19553–19560PubMedPubMedCentralCrossRefGoogle Scholar
  55. Dai F, Qiao L, Cao C, Liu X, Tong X, He S, Hu H, Zhang L, Wu S, Tan D, Xiang Z, Lu C (2015) Aspartate decarboxylase is required for a normal pupa pigmentation pattern in the silkworm, Bombyx mori. Sci Rep 5:10885PubMedPubMedCentralCrossRefGoogle Scholar
  56. David J, Capy P, Payant V, Tsakas S (1985) Thoracic trident pigmentation in Drosophila melanogaster: differentiation of geographical populations. Genet Sel Evol 17:211–224PubMedPubMedCentralCrossRefGoogle Scholar
  57. David JR, Capy P, Gauthier J-P (1990) Abdominal pigmentation and growth temperature in Drosophila melanogaster, similarities and differences in the norms of reaction of successive segments. J Evol Biol 3:429–445CrossRefGoogle Scholar
  58. Davis MM, O’Keefe SL, Primrose DA, Hodgetts RB (2007) A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134:4395–4404PubMedCrossRefGoogle Scholar
  59. Davis MM, Primrose DA, Hodgetts RB (2008) A member of the p38 mitogen-activated protein kinase family is responsible for transcriptional induction of Dopa decarboxylase in the epidermis of Drosophila melanogaster during the innate immune response. Mol Cell Biol 28:4883–4895PubMedPubMedCentralCrossRefGoogle Scholar
  60. Delachambre J (1971) La formtion des canauxcutoiculaiores chezL’adulte de Tenebrio molitor L.: Etude ultrastructureale et remarques histochimiques. Tissue Cell 3:499–520PubMedCrossRefGoogle Scholar
  61. Dempsey DR, Jeffries KA, Bond JD, Carpenter AM, Rodriguez-Ospina S, Breydo L, Caswell KK, Merkler DJ (2014) Mechanistic and structural analysis of Drosophila melanogaster arylalkylamine N-acetyltransferases. Biochemistry 53:7777–7793PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dewey EM, McNabb SL, Ewer J, Kuo GR, Takanishi CL, Truman JW, Honegger HW (2004) Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr Biol 14:1208–1213PubMedCrossRefGoogle Scholar
  63. Dittmer NT, Kanost MR (2010) Insect multicopper oxidases: diversity, properties, and physiological roles. Insect Biochem Mol Biol 40:179–188PubMedCrossRefGoogle Scholar
  64. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41PubMedCrossRefGoogle Scholar
  65. Dittmer NT, Gorman MJ, Kanost MR (2009) Characterization of endogenous and recombinant forms of laccase-2, a multicopper oxidase from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 39:596–606PubMedPubMedCentralCrossRefGoogle Scholar
  66. Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J Proteome Res 11:269–278PubMedCrossRefGoogle Scholar
  67. Drapeau MD (2001) The Family of Yellow-Related Drosophila melanogaster Proteins. Biochem Biophys Res Commun 281:611–613PubMedCrossRefGoogle Scholar
  68. Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R (2006) Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res 16:1385–1394PubMedPubMedCentralCrossRefGoogle Scholar
  69. Duff GA, Roberts JE, Foster N (1988) Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry 27:7112–7116PubMedCrossRefGoogle Scholar
  70. Dyda F, Klein DC, Hickman AB (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103PubMedPubMedCentralCrossRefGoogle Scholar
  71. Elias-Neto M, Soares MP, Simoes ZL, Hartfelder K, Bitondi MM (2010) Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochem Mol Biol 40:241–251PubMedCrossRefGoogle Scholar
  72. Evans DA (1989) N-acetyltransferase. Pharmacol Ther 42:157–234PubMedCrossRefGoogle Scholar
  73. Ferguson LC, Green J, Surridge A, Jiggins CD (2011a) Evolution of the insect yellow gene family. Mol Biol Evol 28:257–272PubMedCrossRefGoogle Scholar
  74. Ferguson LC, Maroja L, Jiggins CD (2011b) Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies. Dev Genes Evol 221:297–308PubMedCrossRefGoogle Scholar
  75. Finocchiaro L, Callebert J, Launay JM, Jallon JM (1988) Melatonin biosynthesis in Drosophila: its nature and its effects. J Neurochem 50:382–387PubMedCrossRefGoogle Scholar
  76. Flyg C, Boman HG (1988) Drosophila genes cut and miniature are associated with the susceptibility to infection by Serratia marcescens. Genet Res 52:51–56CrossRefGoogle Scholar
  77. Friggi-Grelin F, Iche M, Birman S (2003) Tissue-specific developmental requirements of Drosophila tyrosine hydroxylase isoforms. Genesis 35:260–269PubMedCrossRefGoogle Scholar
  78. Fujii T, Abe H, Kawamoto M, Katsuma S, Banno Y, Shimada T (2013) Albino (al) is a tetrahydrobiopterin (BH4)-deficient mutant of the silkworm Bombyx mori. Insect Biochem Mol Biol 43:594–600PubMedCrossRefGoogle Scholar
  79. Futahashi R, Fujiwara H (2005) Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Dev Genes Evol 215:519–529PubMedCrossRefGoogle Scholar
  80. Futahashi R, Fujiwara H (2007) Regulation of 20-hydroxyecdysone on the larval pigmentation and the expression of melanin synthesis enzymes and yellow gene of the swallowtail butterfly, Papilio xuthus. Insect Biochem Mol Biol 37:855–864PubMedCrossRefGoogle Scholar
  81. Futahashi R, Fujiwara H (2008) Identification of stage-specific larval camouflage associated genes in the swallowtail butterfly, Papilio xuthus. Dev Genes Evol 218:491–504PubMedCrossRefGoogle Scholar
  82. Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H (2008a) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1138–1146PubMedCrossRefGoogle Scholar
  83. Futahashi R, Sato J, Meng Y, Okamoto S, Daimon T, Yamamoto K, Suetsugu Y, Narukawa J, Takahashi H, Banno Y, Katsuma S, Shimada T, Mita K, Fujiwara H (2008b) Yellow and ebony are the responsible genes for the larval color mutants of the silkworm Bombyx mori. Genetics 180:1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  84. Futahashi R, Banno Y, Fujiwara H (2010) Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 12:157–167PubMedCrossRefGoogle Scholar
  85. Futahashi R, Shirataki H, Narita T, Mita K, Fujiwara H (2012) Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus. BMC Biol 10:46PubMedPubMedCentralCrossRefGoogle Scholar
  86. Futahashi R, Tanaka K, Matsuura Y, Tanahashi M, Kikuchi Y, Fukatsu T (2011) Laccase2 is required for cuticular pigmentation in stinkbugs. Insect Biochem Mol Biol 41:191–196PubMedCrossRefGoogle Scholar
  87. Fuzeau-Braesch S (1972) Pigments and color changes. Annu Rev Entomol 17:403–424CrossRefGoogle Scholar
  88. Gibert P, Moreteau B, Moreteau JC, David JR (1996) Growth temperature and adult pigmentation in two Drosophila sibling species: an adaptive convergence of reaction norms in sympatric populations? Evolution 50:2346–2353CrossRefGoogle Scholar
  89. Gibert P, Moreteau B, Moreteau JC, Parkash R, David JR (1998) Light body pigmentation in Indian Drosophila melanogaster: a likely adaptation to a hot and arid climate. J Genet 77:13–20CrossRefGoogle Scholar
  90. Gibert JM, Peronnet F, Schlotterer C (2007) Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 3, e30PubMedPubMedCentralCrossRefGoogle Scholar
  91. Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487PubMedCrossRefGoogle Scholar
  92. Gorman MJ, Arakane Y (2010) Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. Insect Biochem Mol Biol 40:267–273PubMedPubMedCentralCrossRefGoogle Scholar
  93. Gorman MJ, An C, Kanost MR (2007) Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochem Mol Biol 37:1327–1337PubMedPubMedCentralCrossRefGoogle Scholar
  94. Gorman MJ, Dittmer NT, Marshall JL, Kanost MR (2008) Characterization of the multicopper oxidase gene family in Anopheles gambiae. Insect Biochem Mol Biol 38:817–824PubMedPubMedCentralCrossRefGoogle Scholar
  95. Gorman MJ, Sullivan LI, Nguyen TD, Dai H, Arakane Y, Dittmer NT, Syed LU, Li J, Hua DH, Kanost MR (2012) Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae. Insect Biochem Mol Biol 42:193–202PubMedCrossRefGoogle Scholar
  96. Guo ZJ, Kang S, Zhu X, Xia JX, Wu QJ, Wang SL, Xie W, Zhang YJ (2015) The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Sci Rep 5:13728PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hackman RH (1974) Chemistry of the insect cuticle. In: Rockstein M (ed) The physiology of insects, vol 6. Academic, New York, pp 215–270CrossRefGoogle Scholar
  98. Hackman RH (1984) Cuticle biochemistry. In: Bereiter-Hahn J, Motolsy AG, Richards KS (eds) Biolgy of the integument, vol 1. Springer, Berlin, pp 583–610CrossRefGoogle Scholar
  99. Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J (2002) Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 368:333–340PubMedPubMedCentralCrossRefGoogle Scholar
  100. Han Q, Ding H, Robinson H, Christensen BM, Li J (2010) Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. PLoS One 5, e8826PubMedPubMedCentralCrossRefGoogle Scholar
  101. Han Q, Robinson H, Ding H, Christensen BM, Li J (2012) Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A 109:11669–11674PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hardie J, Gao N (1997) Melatonin and the pea aphid, Acyrthosiphon pisum. J Insect Physiol 43:615–620PubMedCrossRefGoogle Scholar
  103. Hartwig S, Dovengerds C, Herrmann C, Hovemann BT (2014) Drosophila Ebony: a novel type of nonribosomal peptide synthetase related enzyme with unusually fast peptide bond formation kinetics. FEBS J 281:5147–5158PubMedCrossRefGoogle Scholar
  104. Hayakawa Y (1991) Structure of a growth-blocking peptide present in parasitized insect hemolymph. J Biol Chem 266:7982–7984PubMedGoogle Scholar
  105. Hayakawa Y, Ohnishi A, Yamanaka A, Izumi S, Tomino S (1995) Molecular cloning and characterization of cDNA for insect biogenic peptide, growth-blocking peptide. FEBS Lett 376:185–189PubMedCrossRefGoogle Scholar
  106. Hazel WN, West DA (1979) Environmental control of pupal colour in swallowtail butterflies (Lepidoptera: Papilioninae): Battus philenor (L.) and Papilio polyxenes Fabr. Ecol Entomol 4:393–400CrossRefGoogle Scholar
  107. Hazel WN, West DA (1983) The effect of larval photoperiod on pupal colour and diapause in swallowtail butterflies. Ecol Entomol 8:37–42CrossRefGoogle Scholar
  108. He CL, Zu Q, Chen JX, Noori MN (2015) A review of the mechanical properties of beetle elytra and development of the biomimetic honeycomb plates. J Sandw Struct Mater 17:399–416CrossRefGoogle Scholar
  109. Hintermann E, Jeno P, Meyer UA (1995) Isolation and characterization of an arylalkylamine N-acetyltransferase from Drosophila melanogaster. FEBS Lett 375:148–150PubMedCrossRefGoogle Scholar
  110. Hintermann E, Grieder NC, Amherd R, Brodbeck D, Meyer UA (1996) Cloning of an arylalkylamine N-acetyltransferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system and the gut. Proc Natl Acad Sci U S A 93:12315–12320PubMedPubMedCentralCrossRefGoogle Scholar
  111. Hiraga S (2005) Two different sensory mechanisms for the control of pupal protective coloration in butterflies. J Insect Physiol 51:1033–1040PubMedCrossRefGoogle Scholar
  112. Hiragaki S, Suzuki T, Mohamed AA, Takeda M (2015) Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol 6:113PubMedPubMedCentralCrossRefGoogle Scholar
  113. Hiruma K, Riddiford LM (1988) Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: regulation of its synthesis in the epidermis by juvenile hormone. Dev Biol 130:87–97PubMedCrossRefGoogle Scholar
  114. Hiruma K, Riddiford LM (1990) Regulation of dopa decarboxylase gene expression in the larval epidermis of the tobacco hornworm by 20-hydroxyecdysone and juvenile hormone. Dev Biol 138:214–224PubMedCrossRefGoogle Scholar
  115. Hiruma K, Riddiford LM (1993) Molecular mechanisms of cuticular melanization in the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Int J Insect Morphol Embryol 22:103–117CrossRefGoogle Scholar
  116. Hiruma K, Riddiford LM (2009) The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. Insect Biochem Mol Biol 39:245–253PubMedCrossRefGoogle Scholar
  117. Hiruma K, Riddiford LM, Hopkins TL, Morgan TD (1985) Roles of dopa decarboxylase and phenoloxidase in the melanization of the tobacco hornworm and their control by 20-hydroxyecdysone. J Comp Physiol B 155:659–669PubMedCrossRefGoogle Scholar
  118. Hodgetts RB (1972) Biochemical characterization of mutants affecting the metabolism of β-alanine in Drosophila. J Insect Physiol 18:937–947PubMedCrossRefGoogle Scholar
  119. Hodgetts R, Choi A (1974) Beta alanine and cuticle maturation in Drosophila. Nature 252:710–711PubMedCrossRefGoogle Scholar
  120. Hodgetts RB, Konopka RJ (1973) Tyrosine and catecholamine metabolism in wild-type Drosophila melanogaster and a mutant, ebony. J Insect Physiol 19:1211–1220PubMedCrossRefGoogle Scholar
  121. Hodgetts RB, O’Keefe SL (2006) Dopa decarboxylase: a model gene-enzyme system for studying development, behavior, and systematics. Annu Rev Entomol 51:259–284PubMedCrossRefGoogle Scholar
  122. Hojo M, Kagami T, Sasaki T, Nakamura J, Sasaki M (2010) Reduced expression of major royal jelly protein 1 gene in the mushroom bodies of worker honeybees with reduced learning ability. Apidologie 41:194–202CrossRefGoogle Scholar
  123. Honegger HW, Dewey EM, Ewer J (2008) Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:989–1005PubMedCrossRefGoogle Scholar
  124. Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949CrossRefGoogle Scholar
  125. Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302CrossRefGoogle Scholar
  126. Hopkins TL, Morgan TD, Kramer KJ (1984) Catecholamines in haemolymph and cuticle during larval, pupal and adult development of Manduca sexta (L.). Insect Biochem 14:533–540CrossRefGoogle Scholar
  127. Hori M, Hiruma K, Riddiford LM (1984) Cuticular melanization in the tobacco hornworm larva. Insect Biochem 14:267–274CrossRefGoogle Scholar
  128. Hotta Y, Benzer S (1969) Abnormal electroretinograms in visual mutants of Drosophila. Nature 222:354–356PubMedCrossRefGoogle Scholar
  129. Hovemann BT, Ryseck RP, Walldorf U, Stortkuhl KF, Dietzel ID, Dessen E (1998) The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. Gene 221:1–9PubMedCrossRefGoogle Scholar
  130. Huang CY, Chou SY, Bartholomay LC, Christensen BM, Chen CC (2005) The use of gene silencing to study the role of dopa decarboxylase in mosquito melanization reactions. Insect Mol Biol 14:237–244PubMedCrossRefGoogle Scholar
  131. Huang J, Zhang Y, Li M, Wang S, Liu W, Couble P, Zhao G, Huang Y (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581:697–701PubMedCrossRefGoogle Scholar
  132. Hudson A (1966) Proteins in the haemolymph and other tissues of the developing tomato hornworm, Protoparce quinquemaculata Haworth. Can J Zool 44:541–555PubMedCrossRefGoogle Scholar
  133. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235PubMedCrossRefGoogle Scholar
  134. Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ (2014) CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models. Insect Biochem Mol Biol 52:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ito K, Katsuma S, Yamamoto K, Kadono-Okuda K, Mita K, Shimada T (2010) Yellow-e determines the color pattern of larval head and tail spots of the silkworm Bombyx mori. J Biol Chem 285:5624–5629PubMedCrossRefGoogle Scholar
  136. Itoh MT, Hattori A, Nomura T, Sumi Y, Suzuki T (1995a) Melatonin and arylalkylamine N-acetyltransferase activity in the silkworm, Bombyx mori. Mol Cell Endocrinol 115:59–64PubMedCrossRefGoogle Scholar
  137. Itoh MT, Hattori A, Sumi Y, Suzuki T (1995b) Day-night changes in melatonin levels in different organs of the cricket (Gryllus bimaculatus). J Pineal Res 18:165–169PubMedCrossRefGoogle Scholar
  138. Jacobs ME (1968) β-Alanine used by ebony and normal Drosophila melanogaster with notes on glucose, uracil, dopa, and dopamine. Biochem Genet 1:267–275PubMedCrossRefGoogle Scholar
  139. Jacobs CG, Braak N, Lamers GE, van der Zee M (2015) Elucidation of the serosal cuticle machinery in the beetle Tribolium by RNA sequencing and functional analysis of Knickkopf1, Retroactive and Laccase 2. Insect Biochem Mol Biol 60:7–12PubMedCrossRefGoogle Scholar
  140. Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB (2008) The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132:783–793PubMedCrossRefGoogle Scholar
  141. Kanost M, Gorman MJ (2008) Phenoloxidases in insect immunity. In: Beckage N (ed) Insect immunology. Academic, San Diego, pp 69–96CrossRefGoogle Scholar
  142. Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ, Willis JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol 37:754–760PubMedCrossRefGoogle Scholar
  143. Kayser H (1985) Pigments. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 10. Pergamon Press, New York, pp 367–415Google Scholar
  144. Kayser-Wegmann I (1976) Differences in black pigmentation in lepidopterans as revealed by light and electron microscopy. Cell Tissue Res 171:513–521PubMedCrossRefGoogle Scholar
  145. Kim MH, Joo CH, Cho MY, Kwon TH, Lee KM, Natori S, Lee TH, Lee BL (2000) Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae. Eur J Biochem 267:2599–2608PubMedCrossRefGoogle Scholar
  146. Klein DC (2007) Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem 282:4233–4237PubMedCrossRefGoogle Scholar
  147. Koch PB, Keys DN, Rocheleau T, Aronstein K, Blackburn M, Carroll SB, ffrench-Constant RH (1998) Regulation of dopa decarboxylase expression during colour pattern formation in wild-type and melanic tiger swallowtail butterflies. Development 125:2303–2313PubMedGoogle Scholar
  148. Koch PB, Behnecke B, ffrench-Constant RH (2000) The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr Biol 10:591–594Google Scholar
  149. Kramer KJ, Hopkins TL (1987) Tyrosine metabolism for insect cuticle tanning. Arch Insect Biochem Physiol 6:279–301CrossRefGoogle Scholar
  150. Kramer KJ, Morgan TD, Hopkins TL, Roseland CR, Aso Y, Beeman RW (1984) Catecholamines and β-alanine in the red flour beetle, Tribolium castaneum. Roles in cuticle sclerotization and melanization. Insect Biochem 14:293–298CrossRefGoogle Scholar
  151. Kramer KJ, Morgan TD, Hopkins TL, Christensen AM, Schaefer J (1989) Solid-state 13C-NMR and diphenol analyses of sclerotized cuticles from stored product Coleoptera. Insect Biochem 19:753–757CrossRefGoogle Scholar
  152. Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25:1067–1080CrossRefGoogle Scholar
  153. Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin JL, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedon 57:385–392CrossRefGoogle Scholar
  154. Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE (2012) Unraveling the thread of nature’s tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res 25:411–433PubMedCrossRefGoogle Scholar
  155. Kucharski R, Maleszka R, Hayward DC, Ball EE (1998) A royal jelly protein is expressed in a subset of Kenyon cells in the mushroom bodies of the honey bee brain. Naturwissenschaften 85:343–346PubMedCrossRefGoogle Scholar
  156. Kumar A, Wang S, Ou R, Samrakandi M, Beerntsen BT, Sayre RT (2013) Development of an RNAi based microalgal larvicide to control mosquitoes. Malaria World J 4:1–7Google Scholar
  157. Kupke J, Spaethe J, Mueller MJ, Rossler W, Albert S (2012) Molecular and biochemical characterization of the major royal jelly protein in bumblebees suggest a non-nutritive function. Insect Biochem Mol Biol 42:647–654PubMedCrossRefGoogle Scholar
  158. Kyriacou CP, Burnet B, Connolly K (1978) Behavioral basis of overdominance in competitive mating success at the ebony locus of Drosophila melanogaster. Anim Behav 26:1195–1206CrossRefGoogle Scholar
  159. Lee KS, Kim BY, Jin BR (2015) Differential regulation of tyrosine hydroxylase in cuticular melanization and innate immunity in the silkworm Bombyx mori. J Asia Pac Entomol 18:765–770CrossRefGoogle Scholar
  160. Leem JY, Nishimura C, Kurata S, Shimada I, Kobayashi A, Natori S (1996) Purification and characterization of N-beta-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). J Biol Chem 271:13573–13577PubMedCrossRefGoogle Scholar
  161. Li J (1994) Egg chorion tanning in Aedes aegypti mosquito. Comp Biochem Physiol A 109:835–843CrossRefGoogle Scholar
  162. Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H (2011) RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Manag Sci 67:852–859PubMedCrossRefGoogle Scholar
  163. Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington, WashingtonGoogle Scholar
  164. Liu C, Yamamoto K, Cheng TC, Kadono-Okuda K, Narukawa J, Liu SP, Han Y, Futahashi R, Kidokoro K, Noda H, Kobayashi I, Tamura T, Ohnuma A, Banno Y, Dai FY, Xiang ZH, Goldsmith MR, Mita K, Xia QY (2010) Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 107:12980–12985PubMedPubMedCentralCrossRefGoogle Scholar
  165. Liu P, Ding H, Christensen BM, Li J (2012) Cysteine sulfinic acid decarboxylase activity of Aedes aegypti aspartate 1-decarboxylase: the structural basis of its substrate selectivity. Insect Biochem Mol Biol 42:396–403PubMedCrossRefGoogle Scholar
  166. Liu J, Lemonds TR, Popadic A (2014) The genetic control of aposematic black pigmentation in hemimetabolous insects: insights from Oncopeltus fasciatus. Evol Dev 16:270–277PubMedPubMedCentralCrossRefGoogle Scholar
  167. Liu S, Wang M, Li X (2015) Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua. Sci Rep 5:11273PubMedPubMedCentralCrossRefGoogle Scholar
  168. Locke M (1961) Pore canals and related structures in insect cuticle. J Biophys Biochem Cytol 10:589–618PubMedPubMedCentralCrossRefGoogle Scholar
  169. Locke M (2001) The Wigglesworth lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507PubMedCrossRefGoogle Scholar
  170. Lomakin J, Arakane Y, Kramer KJ, Beeman RW, Kanost MR, Gehrke SH (2010) Mechanical properties of elytra from Tribolium castaneum wild-type and body color mutant strains. J Insect Physiol 56:1901–1906PubMedCrossRefGoogle Scholar
  171. Lomakin J, Huber PA, Eichler C, Arakane Y, Kramer KJ, Beeman RW, Kanost MR, Gehrke SH (2011) Mechanical properties of the beetle elytron, a biological composite material. Biomacromolecules 12:321–335PubMedCrossRefGoogle Scholar
  172. Luan H, Lemon WC, Peabody NC, Pohl JB, Zelensky PK, Wang D, Nitabach MN, Holmes TC, White BH (2006) Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J Neurosci 26:573–584PubMedPubMedCentralCrossRefGoogle Scholar
  173. Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci U S A 102:2820–2825PubMedPubMedCentralCrossRefGoogle Scholar
  174. Maeno K, Gotoh T, Tanaka S (2004) Phase-related morphological changes induced by [His7]-corazonin in two species of locusts, Schistocerca gregaria and Locusta migratoria (Orthoptera: Acrididae). Bull Entomol Res 94:349–357PubMedCrossRefGoogle Scholar
  175. Mahdi SH, Gima S, Tomita Y, Yamasaki H, Otaki JM (2010) Physiological characterization of the cold-shock-induced humoral factor for wing color-pattern changes in butterflies. J Insect Physiol 56:1022–1031PubMedCrossRefGoogle Scholar
  176. Maleszka R, Kucharski R (2000) Analysis of Drosophila yellow-B cDNA reveals a new family of proteins related to the royal jelly proteins in the honeybee and to an orphan protein in an unusual bacterium Deinococcus radiodurans. Biochem Biophys Res Commun 270:773–776PubMedCrossRefGoogle Scholar
  177. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedCrossRefGoogle Scholar
  178. Marmaras VJ, Charalambidis ND, Zervas CG (1996) Immune response in insects: the role of phenoloxidase in defense reactions in relation to melanization and sclerotization. Arch Insect Biochem Physiol 31:119–133PubMedCrossRefGoogle Scholar
  179. Matsumoto S, Sogai AI, Suzuki A, Ogura N, Sonobe H (1981) Purification and properties of the melanization and reddish colouration hormone (MRCH) in the armyworm, Leucania separata (Lepidoptera). Insect Biochem 11:725–733CrossRefGoogle Scholar
  180. Matsumoto S, Isogai A, Suzuki A (1986) Isolation and amino terminal sequence of melanization and reddish coloration hormone (MRCH) from the silkworm, Bombyx mori. Insect Biochem 16:775–779CrossRefGoogle Scholar
  181. Mehere P, Han Q, Christensen BM, Li J (2011) Identification and characterization of two arylalkylamine N-acetyltransferases in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 41:707–714PubMedPubMedCentralCrossRefGoogle Scholar
  182. Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579:2171–2176PubMedCrossRefGoogle Scholar
  183. Merrifield F (1890) Systematic temperature experiments on some Lepidoptera in all their stages. Trans Entomol Soc Lond 38:131–159CrossRefGoogle Scholar
  184. Merrifield F (1893) The effects of temperature in the pupal stage on the colouring of Pieris napi, Vanessa atalanta, Chrysophanus phloeas, and Ephyra punctaria. Trans Entomol Soc Lond 41:55–67CrossRefGoogle Scholar
  185. Meylaers K, Cerstiaens A, Vierstraete E, Baggerman G, Michiels CW, De Loof A, Schoofs L (2003) Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of β-alanyl-tyrosine. Curr Pharm Des 9:159–174PubMedCrossRefGoogle Scholar
  186. Miyata K, Ramaseshadri P, Zhang Y, Segers G, Bolognesi R, Tomoyasu Y (2014) Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS One 9, e101661PubMedPubMedCentralCrossRefGoogle Scholar
  187. Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40:363–375PubMedCrossRefGoogle Scholar
  188. Moussian B, Seifarth C, Muller U, Berger J, Schwarz H (2006) Cuticle differentiation during Drosophila embryogenesis. Arthropod Struct Dev 35:137–152PubMedCrossRefGoogle Scholar
  189. Mun S, Noh MY, Dittmer NT, Muthukrishnan S, Kramer KJ, Kanost MR, Arakane Y (2015) Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Sci Rep 5:10484PubMedPubMedCentralCrossRefGoogle Scholar
  190. Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066PubMedCrossRefGoogle Scholar
  191. Nappi AJ, Carton Y, Vass E (1992) Reduced cellular immune competence of a temperature-sensitive dopa decarboxylase mutant strain of Drosophila melanogaster against the parasite Leptopilina boulardi. Comp Biochem Physiol B 101:453–460PubMedCrossRefGoogle Scholar
  192. Nash WG, Yarkin RJ (1974) Genetic regulation and pattern formation: a study of the yellow locus in Drosophila melanogaster. Genet Res 24:19–26PubMedCrossRefGoogle Scholar
  193. Nassel DR (1996) Neuropeptides, amines and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion. Prog Neurobiol 48:325–420PubMedCrossRefGoogle Scholar
  194. Neckameyer WS, Leal SM (2002) Biogenic amines as circulating hormones in insects. In: Hormones, brain and behavior, vol 3. Academic, San Diego, pp 141–165CrossRefGoogle Scholar
  195. Neckameyer WS, White K (1993) Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet 8:189–199PubMedCrossRefGoogle Scholar
  196. Neville AC (1993) Biology of fibrous composites: development beyond the cell membrane. Cambridge University Press, New YorkCrossRefGoogle Scholar
  197. Newby LM, Jackson FR (1991) Drosophila ebony mutants have altered circadian activity rhythms but normal eclosion rhythms. J Neurogenet 7:85–101PubMedCrossRefGoogle Scholar
  198. Ni QQ, Chen JX, Iwamoto M, Kurashiki K, Saito K (2001) Interlaminar reinforcement mechanism in a beetle fore-wing. JSME Int J C-Mech Sy 44:1111–1116CrossRefGoogle Scholar
  199. Ninomiya Y, Hayakawa Y (2007) Insect cytokine, growth-blocking peptide, is a primary regulator of melanin-synthesis enzymes in armyworm larval cuticle. FEBS J 274:1768–1777PubMedCrossRefGoogle Scholar
  200. Ninomiya Y, Tanaka K, Hayakawa Y (2006) Mechanisms of black and white stripe pattern formation in the cuticles of insect larvae. J Insect Physiol 52:638–645PubMedCrossRefGoogle Scholar
  201. Nishikawa H, Iga M, Yamaguchi J, Saito K, Kataoka H, Suzuki Y, Sugano S, Fujiwara H (2013) Molecular basis of wing coloration in a Batesian mimic butterfly, Papilio polytes. Sci Rep 3:3184PubMedPubMedCentralCrossRefGoogle Scholar
  202. Niu BL, Shen WF, Liu Y, Weng HB, He LH, Mu JJ, Wu ZL, Jiang P, Tao YZ, Meng ZQ (2008) Cloning and RNAi-mediated functional characterization of MaLac2 of the pine sawyer, Monochamus alternatus. Insect Mol Biol 17:303–312PubMedCrossRefGoogle Scholar
  203. Noh MY, Kramer KJ, Muthukrishnan S, Kanost MR, Beeman RW, Arakane Y (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem Mol Biol 53C:22–29CrossRefGoogle Scholar
  204. Noh MY, Kramer KJ, Muthukrishnan S, Beeman RW, Kanost MR, Arakane Y (2015a) Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Dev Biol 399:315–324PubMedCrossRefGoogle Scholar
  205. Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2015b) Tribolium castaneum RR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genet 11, e1004963PubMedPubMedCentralCrossRefGoogle Scholar
  206. Ohnishi E (1954) Tyrosinase in Drosophila virilis. Annot Zool Jpn 27:33–39Google Scholar
  207. Osanai-Futahashi M, Ohde T, Hirata J, Uchino K, Futahashi R, Tamura T, Niimi T, Sezutsu H (2012a) A visible dominant marker for insect transgenesis. Nat Commun 3:1295PubMedPubMedCentralCrossRefGoogle Scholar
  208. Osanai-Futahashi M, Tatematsu K, Yamamoto K, Narukawa J, Uchino K, Kayukawa T, Shinoda T, Banno Y, Tamura T, Sezutsu H (2012b) Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. J Biol Chem 287:17706–17714PubMedPubMedCentralCrossRefGoogle Scholar
  209. Osborne RH (1996) Insect neurotransmission: neurotransmitters and their receptors. Pharmacol Ther 69:117–142PubMedCrossRefGoogle Scholar
  210. Park JH, Schroeder AJ, Helfrich-Forster C, Jackson FR, Ewer J (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 130:2645–2656PubMedCrossRefGoogle Scholar
  211. Paskewitz SM, Andreev O (2008) Silencing the genes for dopa decarboxylase or dopachrome conversion enzyme reduces melanization of foreign targets in Anopheles gambiae. Comp Biochem Physiol B 150:403–408PubMedPubMedCentralCrossRefGoogle Scholar
  212. Peiren N, de Graaf DC, Vanrobaeys F, Danneels EL, Devreese B, Van Beeumen J, Jacobs FJ (2008) Proteomic analysis of the honey bee worker venom gland focusing on the mechanisms of protection against tissue damage. Toxicon 52:72–83PubMedCrossRefGoogle Scholar
  213. Pepling M, Mount SM (1990) Sequence of a cDNA from the Drosophila melanogaster white gene. Nucleic Acids Res 18:1633PubMedPubMedCentralCrossRefGoogle Scholar
  214. Perez M, Wappner P, Quesada-Allue LA (2002) Catecholamine-beta-alanyl ligase in the medfly Ceratitis capitata. Insect Biochem Mol Biol 32:617–625PubMedCrossRefGoogle Scholar
  215. Perez MM, Sabio G, Badaracco A, Quesada-Allue LA (2011) Constitutive expression and enzymatic activity of Tan protein in brain and epidermis of Ceratitis capitata and of Drosophila melanogaster wild-type and tan mutants. Insect Biochem Mol Biol 41:653–659PubMedCrossRefGoogle Scholar
  216. Phillips AM, Salkoff LB, Kelly LE (1993) A neural gene from Drosophila melanogaster with homology to vertebrate and invertebrate glutamate decarboxylases. J Neurochem 61:1291–1301PubMedCrossRefGoogle Scholar
  217. Phillips AM, Smart R, Strauss R, Brembs B, Kelly LE (2005) The Drosophila black enigma: the molecular and behavioural characterization of the black1 mutant allele. Gene 351:131–142PubMedCrossRefGoogle Scholar
  218. Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6, e25709PubMedPubMedCentralCrossRefGoogle Scholar
  219. Pool JE, Aquadro CF (2007) The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol Ecol 16:2844–2851PubMedPubMedCentralCrossRefGoogle Scholar
  220. Prasain K, Nguyen TD, Gorman MJ, Barrigan LM, Peng Z, Kanost MR, Syed LU, Li J, Zhu KY, Hua DH (2012) Redox potentials, laccase oxidation, and antilarval activities of substituted phenols. Bioorg Med Chem 20:1679–1689PubMedPubMedCentralCrossRefGoogle Scholar
  221. Predel R, Neupert S, Russell WK, Scheibner O, Nachman RJ (2007) Corazonin in insects. Peptides 28:3–10PubMedCrossRefGoogle Scholar
  222. Qiao L, Li Y, Xiong G, Liu X, He S, Tong X, Wu S, Hu H, Wang R, Hu H, Chen L, Zhang L, Wu J, Dai F, Lu C, Xiang Z (2012) Effects of altered catecholamine metabolism on pigmentation and physical properties of sclerotized regions in the silkworm melanism mutant. PLoS One 7, e42968PubMedPubMedCentralCrossRefGoogle Scholar
  223. Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10:3227–3234PubMedCrossRefGoogle Scholar
  224. Queener SW, Neuss N (1982) The biosynthesis of β-lactam antibiotics. In: Morin EB, Morgan M (eds) Beta-lactam antibiotics, vol 3. Academic, London, pp 1–81CrossRefGoogle Scholar
  225. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mat Sci Eng A Struct 421:143–153CrossRefGoogle Scholar
  226. Rajpurohit S, Nedved O (2013) Clinal variation in fitness related traits in tropical drosophilids of the Indian subcontinent. J Therm Biol 38:345–354CrossRefGoogle Scholar
  227. Randolt K, Gimple O, Geissendorfer J, Reinders J, Prusko C, Mueller MJ, Albert S, Tautz J, Beier H (2008) Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol 69:155–167PubMedCrossRefGoogle Scholar
  228. Rebers JE, Riddiford LM (1988) Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 203:411–423PubMedCrossRefGoogle Scholar
  229. Rebers JE, Willis JH (2001) A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol 31:1083–1093PubMedCrossRefGoogle Scholar
  230. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2010) An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep 37:3199–3205PubMedCrossRefGoogle Scholar
  231. Richardt A, Rybak J, Stortkuhl KF, Meinertzhagen IA, Hovemann BT (2002) Ebony protein in the Drosophila nervous system: optic neuropile expression in glial cells. J Comp Neurol 452:93–102PubMedCrossRefGoogle Scholar
  232. Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT (2003) Ebony, a novel nonribosomal peptide synthetase for beta-alanine conjugation with biogenic amines in Drosophila. J Biol Chem 278:41160–41166PubMedCrossRefGoogle Scholar
  233. Riddiford LM (2008) Juvenile hormone action: A 2007 perspective. J Insect Physiol 54:895–901PubMedCrossRefGoogle Scholar
  234. Riddiford LM, Hiruma K, Zhou X, Nelson CA (2003) Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem Mol Biol 33:1327–1338PubMedCrossRefGoogle Scholar
  235. Riedel F, Vorkel D, Eaton S (2011) Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. Development 138:149–158PubMedCrossRefGoogle Scholar
  236. Roseland CR, Kramer KJ, Hopkins TL (1987) Cuticular strength and pigmentation of rust-red and black strains of Tribolium castaneum: Correlation with catecholamine and β-alanine content. Insect Biochem 17:21–28CrossRefGoogle Scholar
  237. Schachter J, Perez MM, Quesada-Allue LA (2007) The role of N-β-alanyldopamine synthase in the innate immune response of two insects. J Insect Physiol 53:1188–1197PubMedCrossRefGoogle Scholar
  238. Schaefer J, Kramer KJ, Garbow JR, Jacob GS, Stejskal EO, Hopkins TL, Speirs RD (1987) Aromatic cross-links in insect cuticle: detection by solid-state 13C and 15N NMR. Science 235:1200–1204PubMedCrossRefGoogle Scholar
  239. Schmitzova J, Klaudiny J, Albert S, Schroder W, Schreckengost W, Hanes J, Judova J, Simuth J (1998) A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci 54:1020–1030PubMedCrossRefGoogle Scholar
  240. Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6(Suppl 2):S165–S184PubMedCrossRefGoogle Scholar
  241. Seidl B, Huemer K, Neues F, Hild S, Epple M, Ziegler A (2011) Ultrastructure and mineral distribution in the tergite cuticle of the beach isopod Tylos europaeus Arcangeli, 1938. J Struct Biol 174:512–526PubMedCrossRefGoogle Scholar
  242. Semensi V, Sugumaran M (1986) Effect of MON-0585 on sclerotization of Aedes aegypti cuticle. Pestic Biochem Physiol 26:220–230CrossRefGoogle Scholar
  243. Shamim G, Ranjan SK, Pandey DM, Ramani R (2014) Biochemistry and biosynthesis of insect pigments. Eur J Entomol 111:149–164Google Scholar
  244. Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microb Biot 23:823–832CrossRefGoogle Scholar
  245. Shirataki H, Futahashi R, Fujiwara H (2010) Species-specific coordinated gene expression and trans-regulation of larval color pattern in three swallowtail butterflies. Evol Dev 12:305–314PubMedCrossRefGoogle Scholar
  246. Sideri M, Tsakas S, Markoutsa E, Lampropoulou M, Marmaras VJ (2008) Innate immunity in insects: surface-associated dopa decarboxylase-dependent pathways regulate phagocytosis, nodulation and melanization in medfly haemocytes. Immunology 123:528–537PubMedPubMedCentralCrossRefGoogle Scholar
  247. Simon JD, Peles D, Wakamatsu K, Ito S (2009) Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 22:563–579PubMedCrossRefGoogle Scholar
  248. Simpson SJ, Sword GA, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749PubMedCrossRefGoogle Scholar
  249. Sims SR, Shapiro AM (1984) Pupal color dimorphism in California Battus philenor (L.) (Papilionidae): mortality factors and selective advantage. J Lepid Soc 37:236–243Google Scholar
  250. Singh S, Malhotra AG, Pandey A, Pandey KM (2013) Computational model for pathway reconstruction to unravel the evolutionary significance of melanin synthesis. Bioinformation 9:94–100PubMedPubMedCentralCrossRefGoogle Scholar
  251. Sloley BD (2004) Metabolism of monoamines in invertebrates: the relative importance of monoamine oxidase in different phyla. Neurotoxicology 25:175–183PubMedCrossRefGoogle Scholar
  252. Smith AG (1978) Environmental factors influencing pupal colour determination in Lepidoptera. I. Experiments with Papilio polytes, Papilio demoleus and Papilio polyxenes. Proc R Soc B 200:295–329CrossRefGoogle Scholar
  253. Smith AG (1980) Environmental factors influencing pupal colour determination in Lepidoptera. II. Experiments with Pieris rapae, Pieris napi and Pieris brassicae. Proc R Soc B 207:163–186CrossRefGoogle Scholar
  254. Smith TJ (1990) Phylogenetic distribution and function of arylalkylamine N-acetyltransferase. BioEssays 12:30–33PubMedCrossRefGoogle Scholar
  255. Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie CR, Elhaik E, Elsik CG, Fave MJ, Fernandes V, Gadau J, Gibson JD, Graur D, Grubbs KJ, Hagen DE, Helmkampf M, Holley JA, Hu H, Viniegra AS, Johnson BR, Johnson RM, Khila A, Kim JW, Laird J, Mathis KA, Moeller JA, Munoz-Torres MC, Murphy MC, Nakamura R, Nigam S, Overson RP, Placek JE, Rajakumar R, Reese JT, Robertson HM, Smith CR, Suarez AV, Suen G, Suhr EL, Tao S, Torres CW, van Wilgenburg E, Viljakainen L, Walden KK, Wild AL, Yandell M, Yorke JA, Tsutsui ND (2011) Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci U S A 108:5673–5678PubMedPubMedCentralCrossRefGoogle Scholar
  256. Solano F (2014) Melanins: skin pigments and much more-types, structural models, biological functions, and formation routes. New J Sci 2014:1–28CrossRefGoogle Scholar
  257. Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2–9PubMedCrossRefGoogle Scholar
  258. Sugumaran M (2009) Complexities of cuticular pigmentation in insects. Pigment Cell Melanoma Res 22:523–525PubMedCrossRefGoogle Scholar
  259. Suh J, Jackson FR (2007) Drosophila Ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447PubMedPubMedCentralCrossRefGoogle Scholar
  260. Suzuki Y, Nijhout HF (2006) Evolution of a polyphenism by genetic accommodation. Science 311:650–652PubMedCrossRefGoogle Scholar
  261. Taira W, Otaki JM (2016) Butterfly wings are three-dimensional: pupal cuticle focal spots and their associated structures in junonia butterflies. PLoS One 11, e0146348PubMedPubMedCentralCrossRefGoogle Scholar
  262. Takahashi A (2013) Pigmentation and behavior: potential association through pleiotropic genes in Drosophila. Genes Genet Syst 88:165–174PubMedCrossRefGoogle Scholar
  263. Takahashi A, Takano-Shimizu T (2011) Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster. Mol Ecol 20:4277–4287PubMedCrossRefGoogle Scholar
  264. Takahashi A, Takahashi K, Ueda R, Takano-Shimizu T (2007) Natural variation of ebony gene controlling thoracic pigmentation in Drosophila melanogaster. Genetics 177:1233–1237PubMedPubMedCentralCrossRefGoogle Scholar
  265. Takeuchi K, Satou Y, Yamamoto H, Satoh N (2005) A genome-wide survey of genes for enzymes involved in pigment synthesis in an ascidian, Ciona intestinalis. Zoolog Sci 22:723–734PubMedCrossRefGoogle Scholar
  266. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  267. Tanaka S (2000) The role of [His(7)]-corazonin in the control of body-color polymorphism in the migratory locust, Locusta migratoria (Orthoptera : Acrididae). J Insect Physiol 46:1169–1176PubMedCrossRefGoogle Scholar
  268. Tanaka S, Maeno K (2010) A review of maternal and embryonic control of phase-dependent progeny characteristics in the desert locust. J Insect Physiol 56:911–918PubMedCrossRefGoogle Scholar
  269. Tanaka S, Zhu DH, Hoste B, Breuer M (2002) The dark-color inducing neuropeptide, [His(7)]-corazonin, causes a shift in morphometic characteristics towards the gregarious phase in isolated-reared (solitarious) Locusta migratoria. J Insect Physiol 48:1065–1074PubMedCrossRefGoogle Scholar
  270. Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP (1999) Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A 96:7083–7087PubMedPubMedCentralCrossRefGoogle Scholar
  271. Tearle RG, Belote JM, McKeown M, Baker BS, Howells AJ (1989) Cloning and characterization of the scarlet gene of Drosophila melanogaster. Genetics 122:595–606PubMedPubMedCentralGoogle Scholar
  272. Telonis-Scott M, Hoffmann AA, Sgro CM (2011) The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol Ecol 20:2100–2110PubMedCrossRefGoogle Scholar
  273. Thomas BR, Yonekura M, Morgan TD, Czapla TH, Hopkins TL, Kramer KJ (1989) A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem 19:611–622CrossRefGoogle Scholar
  274. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4, e6225PubMedPubMedCentralCrossRefGoogle Scholar
  275. Togawa T, Nakato H, Izumi S (2004) Analysis of the chitin recognition mechanism of cuticle proteins from the soft cuticle of the silkworm, Bombyx mori. Insect Biochem Mol Biol 34:1059–1067PubMedCrossRefGoogle Scholar
  276. Togawa T, Augustine Dunn W, Emmons AC, Willis JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem Mol Biol 37:675–688PubMedCrossRefGoogle Scholar
  277. Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE (2009) Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Curr Biol 19:2057–2065PubMedCrossRefGoogle Scholar
  278. Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955CrossRefGoogle Scholar
  279. True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18:640–647CrossRefGoogle Scholar
  280. True JR, Edwards KA, Yamamoto D, Carroll SB (1999) Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. Curr Biol 9:1382–1391PubMedCrossRefGoogle Scholar
  281. True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou SR, Han Q, Li J (2005) Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1, e63PubMedPubMedCentralCrossRefGoogle Scholar
  282. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104PubMedCrossRefGoogle Scholar
  283. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391PubMedCrossRefGoogle Scholar
  284. Umebachi Y (1990) β-Alanine and pigmentation of insect cuticle. Molting and metamorphosis. Japan Science and Society Press, TokyoGoogle Scholar
  285. van de Kamp T, Riedel A, Greven H (2015) Micromorphology of the elytral cuticle of beetles, with an emphasis on weevils (Coleoptera: Curculionoidea). Arthropod Struct Dev. doi: 10.1016/j.asd.2015.10.002 Google Scholar
  286. Vavricka CJ, Han Q, Mehere P, Ding H, Christensen BM, Li J (2014) Tyrosine metabolic enzymes from insects and mammals: a comparative perspective. Insect Sci 21:13–19PubMedCrossRefGoogle Scholar
  287. Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250:231–234PubMedCrossRefGoogle Scholar
  288. Veenstra JA (1991) Presence of corazonin in three insect species, and isolation and identification of [His7] corazonin from Schistocerca americana. Peptides 12:1285–1289PubMedCrossRefGoogle Scholar
  289. Vetting MW, SdC LP, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226PubMedCrossRefGoogle Scholar
  290. Vie A, Cigna M, Toci R, Birman S (1999) Differential regulation of Drosophila tyrosine hydroxylase isoforms by dopamine binding and cAMP-dependent phosphorylation. J Biol Chem 274:16788–16795PubMedCrossRefGoogle Scholar
  291. Vieira R, Miguez JM, Aldegunde M (2005) GABA modulates day-night variation in melatonin levels in the cerebral ganglia of the damselfly Ischnura graellsii and the grasshopper Oedipoda caerulescens. Neurosci Lett 376:111–115PubMedCrossRefGoogle Scholar
  292. Vivien-Roels B, Pevet P, Beck O, Fevre-Montange M (1984) Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas chromatography–mass spectrometry. Neurosci Lett 49:153–157PubMedCrossRefGoogle Scholar
  293. Wagner S, Heseding C, Szlachta K, True JR, Prinz H, Hovemann BT (2007) Drosophila photoreceptors express cysteine peptidase tan. J Comp Neurol 500:601–611PubMedCrossRefGoogle Scholar
  294. Walshe DP, Lehane SM, Lehane MJ, Haines LR (2009) Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol Biol 18:11–19PubMedCrossRefGoogle Scholar
  295. Wan PJ, Jia S, Li N, Fan JM, Li GQ (2014) RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 9, e86675PubMedPubMedCentralCrossRefGoogle Scholar
  296. Wang MX, Cai ZZ, Lu Y, Xin HH, Chen RT, Liang S, Singh CO, Kim JN, Niu YS, Miao YG (2013) Expression and functions of dopa decarboxylase in the silkworm, Bombyx mori was regulated by molting hormone. Mol Biol Rep 40:4115–4122PubMedCrossRefGoogle Scholar
  297. Wappner P, Kramer KJ, Manso F, Hopkins TL, Q-A LA (1996) N-β-alanyldopamine metabolism for puparial tanning in wild-type and mutant niger strains of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem Mol Biol 26:585–592CrossRefGoogle Scholar
  298. Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J et al (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348PubMedCrossRefGoogle Scholar
  299. Wigglesworth VB (1985) The transfer of lipid in insects from the epidermal cells to the cuticle. Tissue Cell 17:249–265PubMedCrossRefGoogle Scholar
  300. Willis JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40:189–204PubMedPubMedCentralCrossRefGoogle Scholar
  301. Willis JH, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2012) Cuticular proteins. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic, San Diego, pp 134–166CrossRefGoogle Scholar
  302. Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20:65–71PubMedCrossRefGoogle Scholar
  303. Wittkopp PJ, True JR, Carroll SB (2002a) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129:1849–1858PubMedGoogle Scholar
  304. Wittkopp PJ, Vaccaro K, Carroll SB (2002b) Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 12:1547–1556PubMedCrossRefGoogle Scholar
  305. Wittkopp PJ, Carroll SB, Kopp A (2003a) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19:495–504PubMedCrossRefGoogle Scholar
  306. Wittkopp PJ, Williams BL, Selegue JE, Carroll SB (2003b) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci U S A 100:1808–1813PubMedPubMedCentralCrossRefGoogle Scholar
  307. Wittkopp PJ, Stewart EE, Arnold LL, Neidert AH, Haerum BK, Thompson EM, Akhras S, Smith-Winberry G, Shefner L (2009) Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326:540–544PubMedCrossRefGoogle Scholar
  308. Wright TR (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24:127–222PubMedGoogle Scholar
  309. Xia AH, Zhou QX, Yu LL, Li WG, Yi YZ, Zhang YZ, Zhang ZF (2006) Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori. BMC Genomics 7:195PubMedPubMedCentralCrossRefGoogle Scholar
  310. Yamanaka A, Endo K, Nishida H, Kawamura N, Hatase Y, Kong WH, Kataoka H, Suzuki A (1999) Extraction and partial characterization of pupal-cuticle-melanizing hormone (PCMH) in the swallowtail butterfly, Papilio xuthus L. (Lepidoptera, Papilionidae). Zool Sci 16:261–268CrossRefGoogle Scholar
  311. Yamanaka A, Imai H, Adachi M, Komatsu M, Islam AT, Kodama I, Kitazawa C, Endo K (2004) Hormonal control of the orange coloration of diapause pupae in the swallowtail butterfly, Papilio xuthus L. (Lepidoptera: Papilionidae). Zool Sci 21:1049–1055PubMedCrossRefGoogle Scholar
  312. Yamanaka A, Adachi M, Imai H, Uchiyama T, Inoue M, Islam AT, Kitazawa C, Endo K (2006) Properties of Orange-Pupa-Inducing Factor (OPIF) in the swallowtail butterfly, Papilio xuthus L. Peptides 27:534–538PubMedCrossRefGoogle Scholar
  313. Yamazaki HI (1969) The cuticular phenoloxidase in Drosophila virilis. J Insect Physiol 15:2203–2211CrossRefGoogle Scholar
  314. Yamazaki HI (1972) Cuticular phenoloxidase from the silkworm, Bombyx mori: properties, solubilization, and purification. Insect Biochem 2:431–444CrossRefGoogle Scholar
  315. Yang J, Cohen Stuart MA, Kamperman M (2014) Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev 43:8271–8298PubMedCrossRefGoogle Scholar
  316. Yatsu J, Asano T (2009) Cuticle laccase of the silkworm, Bombyx mori: purification, gene identification and presence of its inactive precursor in the cuticle. Insect Biochem Mol Biol 39:254–262PubMedCrossRefGoogle Scholar
  317. Ye YX, Pan PL, Kang D, Lu JB, Zhang CX (2015) The multicopper oxidase gene family in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol 63:124–132PubMedCrossRefGoogle Scholar
  318. Yoshida H (1883) Chemistry of lacquer (urushi). J Chem Soc 43:472–486CrossRefGoogle Scholar
  319. Zeuss D, Brandl R, Brandle M, Rahbek C, Brunzel S (2014) Global warming favours light-coloured insects in Europe. Nat Commun 5:3874PubMedPubMedCentralCrossRefGoogle Scholar
  320. Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6, e20504PubMedPubMedCentralCrossRefGoogle Scholar
  321. Zhan S, Guo Q, Li M, Li M, Li J, Miao X, Huang Y (2010) Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development 137:4083–4090PubMedCrossRefGoogle Scholar
  322. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693PubMedCrossRefGoogle Scholar
  323. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994PubMedCrossRefGoogle Scholar
  324. Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815PubMedCrossRefGoogle Scholar
  325. Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS One 7, e38572PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yasuyuki Arakane
    • 1
    Email author
  • Mi Young Noh
    • 1
  • Tsunaki Asano
    • 2
  • Karl J. Kramer
    • 3
  1. 1.Department of Applied BiologyChonnam National UniversityGwangjuSouth Korea
  2. 2.Department of Biological SciencesTokyo Metropolitan UniversityTokyoJapan
  3. 3.Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanUSA

Personalised recommendations