Skip to main content

Nitric Oxide: A Multitask Player in Plant–Microorganism Symbioses

  • Chapter
Gasotransmitters in Plants

Abstract

Symbiosis is a close and often long-term interaction between two different biological organisms, i.e. plants or fungi and microorganisms. Two main types of plant–microorganism interactions, mutualistic and cooperative, have been categorized. Mutualistic interactions, including nitrogen-fixing and mycorrhizal symbioses, refer to mostly obligate relationships between a host plant and a symbiont microorganism. Cooperative interactions correspond to less obligate and specific relationships. They involve microorganisms, referred to as plant growth-promoting rhizobia (PGPR), able to colonize root surface or inner tissues. Lichens are symbiotic associations of host fungi and photosynthetic partners that may be Cyanobacteria or green algae. Increasing evidence has been reporting the presence of nitric oxide (NO) during symbiotic interactions. Most of the time, both the plant and the microorganism partners participate in NO production and catabolism. At early stage of the symbiosis, NO was shown to be potentially involved in the repression of plant defence reactions, favouring the establishment of the plant–microbe interaction. At later stages of the interactions, NO was shown to inhibit nitrogen fixation, but it was also demonstrated to have regulatory roles in nitrogen and carbon metabolisms, to play a beneficial metabolic function for the maintenance of the energy status under hypoxic conditions, to cross-react with hormone and reactive oxygen species pathways and to be potentially involved in the set-up of senescence processes. The present review provides an overview of NO production and many-faceted effects in symbiotic interactions and presents several tracks which appear to be particularly promising to decipher the roles of NO in plant–microbe symbioses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1965) Lichens. Annu Rev Microbiol 19(1):1–20. doi:10.1146/annurev.mi.19.100165.000245

    Article  CAS  PubMed  Google Scholar 

  • Alen’kina SA, Petrova LP, Sokolova MK, Chernyshova MP, Trutneva KA, Bogatyrev VA, Nikitina VE (2014) Comparative assessment of inductive effects of Azospirillum lectins with different antigenic properties on the signal systems of wheat seedling roots. Mikrobiologiia 83(3):336–345

    PubMed  Google Scholar 

  • Andrio E, Marino D, Marmeys A, de Segonzac MD, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N (2013) Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 198(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Appleby CA (1992) The origin and functions of haemoglobin in plants. Sci Prog 76:365–398

    CAS  Google Scholar 

  • Arruebarrena Di Palma A, Lamattina L, Creus CM (2011) Nitric oxide as a signal molecule in intracellular and extracellular bacteria-plant interactions. In: Ecological aspects of nitrogen metabolism in plants. Wiley, New York, pp 397–420

    Chapter  Google Scholar 

  • Arruebarrena Di Palma A, Pereyra C, Moreno Ramirez L, Xiqui Vázquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM (2013) Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol Lett 338(1):77–85

    Article  PubMed  Google Scholar 

  • Arthikala M-K, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C (2013) PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant Cell Physiol 54(8):1391–1402

    Article  CAS  PubMed  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13(11):15193–15208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augusto S, Maguas C, Branquinho C (2013) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses–a review. Environ Pollut 180:330–338

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Bonfante P (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 5:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Donald LS (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. In: Advances in agronomy, Chap 2, vol 108. Academic Press, London, pp 77–136

    Google Scholar 

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19(9):970–975

    Article  CAS  PubMed  Google Scholar 

  • Bedmar EJ, Robles EF, Delgado MJ (2005) The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 33(Pt 1):141–144

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26(3):271–277

    Article  CAS  PubMed  Google Scholar 

  • Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L (2015) The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta 243(1):251–62

    Article  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Blanquet P, Silva L, Catrice O, Bruand C, Carvalho H, Meilhoc E (2015) Sinorhizobium meliloti controls NO-mediated post-translational modification of a Medicago truncatula nodule protein. Mol Plant Microbe Interact 28(12):1353–63

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Boscari A, Del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A (2013a) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161(1):425–439

    Article  CAS  PubMed  Google Scholar 

  • Boscari A, Meilhoc E, Castella C, Bruand C, Puppo A, Brouquisse R (2013b) Which role for nitric oxide in symbiotic N2-fixing nodules: toxic by-product or useful signaling/metabolic intermediate? Front Plant Sci 4:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Bustos-Sanmamed P, Tovar-Mendez A, Crespi M, Sato S, Tabata S, Becana M (2011) Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol 189(3):765–776

    Article  CAS  PubMed  Google Scholar 

  • Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L (2012) The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza 22(4):259–269

    Article  CAS  PubMed  Google Scholar 

  • Cam Y, Pierre O, Boncompagni E, Herouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196(2):548–560

    Article  CAS  PubMed  Google Scholar 

  • Carvalho H, Lescure N, de Billy F, Chabaud M, Lima L, Salema R, Cullimore J (2000) Cellular expression and regulation of the Medicago truncatula cytosolic glutamine synthetase genes in root nodules. Plant Mol Biol 42(5):741–756

    Article  CAS  PubMed  Google Scholar 

  • Castillo M-C, Lozano-Juste J, González-Guzmán M, Rodriguez L, Rodriguez PL, León J (2015) Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Sci Signal 8 (392):ra89. doi:10.1126/scisignal.aaa7981

  • Catala M, Pagani R, Portoles MT (2009) Regulation of hepatocyte glutathione content by hepatic sinusoidal cells activated with LPS: anatomical restrictions. Histol Histopathol 24(12):1541–1550

    CAS  PubMed  Google Scholar 

  • Catalá M, Gasulla F, Pradas del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2010) Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol 10:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Catalá M, Gasulla F, Pradas Del Real AE, García-Breijo F, Reig-Armiñana J, Barreno E (2013) The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environ Pollut 179:277–284

    Article  PubMed  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881

    Article  CAS  PubMed  Google Scholar 

  • Chaki M, Kovacs I, Spannagl M, Lindermayr C (2014) Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 9(10):e110232

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang Z, Jiang H, Wang Y, Sun G (2013) Research progress in nitric oxide biosynthesis, degradation and function in fungi. Wei 53(1):6–14

    CAS  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37(7):1215–1227

    Article  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218(6):900–905

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57(3):581–588

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Lombardo C, Lamattina L (2008) Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179(2):386–396

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221(2):297–303

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398(2-3):159–164

    Article  CAS  PubMed  Google Scholar 

  • del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 191(2):405–417

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17(17):3952–3971

    Article  CAS  PubMed  Google Scholar 

  • DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010) Transcriptomic responses to heat stress and bleaching in the Elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113

    Article  CAS  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, Harris JM, Oldroyd GE (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20(10):2681–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35(6):763–770

    Article  CAS  PubMed  Google Scholar 

  • Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dye F (2013) Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol Ecol 87(2):543–555

    Article  PubMed  Google Scholar 

  • Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Hérouart D, Frendo P (2012) The legume root nodule: from symbiotic nitrogen fixation to senescence. In: DTN (ed) Senescence. InTech, Rijeka

    Google Scholar 

  • Espinosa F, Garrido I, Ortega A, Casimiro I, Alvarez-Tinaut MC (2014) Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus. PLoS One 9(6):e100132

    Article  PubMed  PubMed Central  Google Scholar 

  • Feelisch M, Martin JF (1995) The early role of nitric oxide in evolution. Trends Ecol Evol 10(12):496–499

    Article  CAS  PubMed  Google Scholar 

  • Fehlberg V, Vieweg MF, Dohmann EM, Hohnjec N, Puhler A, Perlick AM, Kuster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots. J Exp Bot 56(413):799–806

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15(5):373–379

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Calo G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22(11):3816–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14(6):707–714

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Séjalon-Delmas N, Genre A, Jeandroz S, Bonfante P (2007) Plants and arbuscular mycorrhizal fungi: cues and communication in the early steps of symbiotic interactions. Adv Bot Res 46:181–219

    Article  Google Scholar 

  • Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marin-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tome DF, Coego A, Beynon J, Alabadi D, Bachmair A, Leon J, Gray JE, Theodoulou FL, Holdsworth MJ (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 53(3):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gobbato E (2015) Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7

    Article  PubMed  Google Scholar 

  • Gomez-Hernandez N, Reyes-Gonzalez A, Sanchez C, Mora Y, Delgado MJ, Girard L (2011) Regulation and symbiotic role of nirK and norC expression in Rhizobium etli. Mol Plant Microbe Interact 24(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Goussias C, Sanakis Y, Petrouleas V (1995) Novel effects of nitric oxide and cyanide binding on photosystem II. J Inorg Biochem 59(2-3):273

    Article  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion 11(4):537–543

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hawkins TD, Krueger T, Becker S, Fisher PL, Davy SK (2014) Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs 33(1):141–153

    Article  Google Scholar 

  • Herold S, Puppo A (2005) Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem 10(8):935–945

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R (2015) Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J Exp Bot 66(10):2877–2887

    Article  CAS  PubMed  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins-What’s happening beyond nitric oxide scavenging? AoB Plants 2012:pls004

    Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155(2):1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103(2):259–268

    Article  CAS  PubMed  Google Scholar 

  • Igamberdiev AU, Ratcliffe RG, Gupta KJ (2014) Plant mitochondria: source and target for nitric oxide. Mitochondrion 19(Pt B):329–333

    Google Scholar 

  • Kanayama Y, Yamamoto Y (1991) Formation of nitrosylleghemoglobin in nodules of nitrate-treated cowpea and pea-plants. Plant Cell Physiol 32(1):19–24

    CAS  Google Scholar 

  • Kato K, Kanahama K, Kanayama Y (2010) Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. J Plant Physiol 167(3):238–241

    Article  CAS  PubMed  Google Scholar 

  • Kranner I (2002) Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytol 154(2):451–460

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102(8):3141–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzma MM, Hunt S, Layzell DB (1993) Role of oxygen in the limitation and inhibition of nitrogenase activity and respiration rate in individual soybean nodules. Plant Physiol 101(1):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137(4):1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57(6):1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Leach J, Keyster M, Du Plessis M, Ludidi N (2010) Nitric oxide synthase activity is required for development of functional nodules in soybean. J Plant Physiol 167(18):1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Hitchcock TM, Park SH, Mi R, Kraft JD, Luo J, Cao W (2010) Involvement of thioredoxin domain-containing 5 in resistance to nitrosative stress. Free Radic Biol Med 49(5):872–880

    Article  CAS  PubMed  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12(4):451–458

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li G, Kronzucker HJ, Baluska F, Shi W (2014) Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends Plant Sci 19(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek LA, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479(7373):419–422

    Article  CAS  PubMed  Google Scholar 

  • Liu Z-L, Li Y-J, Hou H-Y, Zhu X-C, Rai V, He X-Y, Tian C-J (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146(3):1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundquist PO (2000) Nitrogenase activity in Alnus incana root nodules. Responses to O(2) and short-term N(2) deprivation. Plant Physiol 122(2):553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maskall CS, Gibson JF, Dart PJ (1977) Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations. Biochem J 167(2):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes? Trends Microbiol 17(10):458–466

    Article  CAS  PubMed  Google Scholar 

  • Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M (2015) Function of glutathione peroxidases in legume root nodules. J Exp Bot 66(10):2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radic Biol Med 24(7-8):1242–1249

    Article  CAS  PubMed  Google Scholar 

  • Meakin GE, Bueno E, Jepson B, Bedmar EJ, Richardson DJ, Delgado MJ (2007) The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules. Microbiology 153(Pt 2):411–419

    Article  CAS  PubMed  Google Scholar 

  • Meilhoc E, Cam Y, Skapski A, Bruand C (2010) The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Mol Plant Microbe Interact 23(6):748–759

    Article  CAS  PubMed  Google Scholar 

  • Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R (2011) Nitric oxide in legume-Rhizobium symbiosis. Plant Sci 181(5):573–581

    Article  CAS  PubMed  Google Scholar 

  • Meilhoc E, Blanquet P, Cam Y, Bruand C (2013) Control of NO level in Rhizobium-legume root nodules: not only a plant globin story. Plant Signal Behav 8(10), e25923

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo PM, Silva LS, Ribeiro I, Seabra AR, Carvalho HG (2011) Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Plant Physiol 157(3):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa S, Alche Jd J, Bedmar E, Delgado MJ (2004) Expression of nir, nor and nos denitrification genes from Bradyrhizobium japonicum in soybean root nodules. Physiol Plant 120(2):205–211

    Article  CAS  PubMed  Google Scholar 

  • Moche M, Stremlau S, Hecht L, Gobel C, Feussner I, Stohr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231(2):425–436

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21(7):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138(4):372–383. doi:10.1111/j.1399-3054.2009.01308.x

    Article  CAS  PubMed  Google Scholar 

  • Moreira AN, Braz-Filho R, Mussi-Dias V, Vieira I (2015) Chemistry and biological activity of Ramalina lichenized fungi. Molecules 20(5):8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Ane JM (2011) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24(2):260–270

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJ, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB plants 5:pls052

    Google Scholar 

  • Nagata M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21(9):1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Hashimoto M, Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) A possible role of class 1 plant hemoglobin at the early stage of legume-Rhizobium symbiosis. Plant Signal Behav 4(3):202–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navascues J, Perez-Rontome C, Gay M, Marcos M, Yang F, Walker FA, Desbois A, Abian J, Becana M (2012) Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA 109(7):2660–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190(23):7864–7867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44(2):195–207

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev 11(4):252–263

    CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ott T, van Dongen JT, Gunther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15(6):531–535

    Article  CAS  PubMed  Google Scholar 

  • Papdi C, Perez-Salamo I, Joseph MP, Giuntoli B, Bogre L, Koncz C, Szabados L (2015) The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genes RAP2.12, RAP2.2 and RAP2.3. Plant J 82(5):772–784

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N, Ford Denison R, Klein M, Tjepkema JD, Winzer T, Sirrenberg A, Guan C, Berry AM (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biol (Stuttg) 9(6):776–785

    Article  CAS  PubMed  Google Scholar 

  • Perez Guerra JC, Coussens G, De Keyser A, De Rycke R, De Bodt S, Van De Velde W, Goormachtig S, Holsters M (2010) Comparison of developmental and stress-induced nodule senescence in Medicago truncatula. Plant Physiol 152(3):1574–1584

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez S, Weis V (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis. J Exp Biol 209(Pt 14):2804–2810

    Article  CAS  PubMed  Google Scholar 

  • Perez-Chaca MV, Rodriguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37(7):1672–1687

    Article  CAS  PubMed  Google Scholar 

  • Pierre O, Hopkins J, Combier M, Baldacci F, Engler G, Brouquisse R, Herouart D, Boncompagni E (2014) Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules. New Phytol 202(3):849–863

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Pócsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76

    Article  PubMed  Google Scholar 

  • Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 165(3):683–701

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18(16):2202–2219

    Article  CAS  PubMed  Google Scholar 

  • Rao M, Smith BC, Marletta MA (2015) Nitric oxide mediates biofilm formation and symbiosis in Silicibacter sp. strain TrichCH4B. mBio 6(3). doi:10.1128/mBio.00206-15

  • Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF (2005) S-nitroso proteome of Mycobacterium tuberculosis: enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102(2):467–472

    Article  CAS  PubMed  Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1-2):305–339

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Redman RS (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302(1–2):91–104

    Article  CAS  Google Scholar 

  • Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrere S, Sallet E, Courcelle E, Moreau S, Debelle F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77(6):817–837

    Article  CAS  PubMed  Google Scholar 

  • Sainz M, Calvo-Begueria L, Perez-Rontome C, Wienkoop S, Abian J, Staudinger C, Bartesaghi S, Radi R, Becana M (2015) Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J 81(5):723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ (2010) Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol Plant Microbe Interact 23(5):702–711

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Cabrera JJ, Gates AJ, Bedmar EJ, Richardson DJ, Delgado MJ (2011) Nitric oxide detoxification in the Rhizobia-legume symbiosis. Biochem Soc Trans 39(1):184–188

    Article  CAS  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot. doi:10.1093/aob/mct048

    Article  PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higashi S, Abe M (2006) A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. Mol Plant Microbe Interact 19(4):441–450

    Article  CAS  PubMed  Google Scholar 

  • Seabra AR, Pereira PA, Becker JD, Carvalho HG (2012) Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprogramming in root nodules of Medicago truncatula. Mol Plant Microbe Interact 25(7):976–992

    Article  CAS  PubMed  Google Scholar 

  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J 57(2):254–263

    Article  CAS  PubMed  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144(3):1455–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva L, Carvalho H (2013) Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses. Front Plant Sci 4:372

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226(2):465–474

    Article  CAS  PubMed  Google Scholar 

  • Sturgeon BE, Glover RE, Chen Y-R, Burka LT, Mason RP (2001) Tyrosine iminoxyl radical formation from tyrosyl radical/nitric oxide and nitrosotyrosine. J Biol Chem 276(49):45516–45521

    Article  CAS  PubMed  Google Scholar 

  • Sudhamsu J, Crane BR (2009) Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 17(5):212–218

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45(7):914–922

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Hocher V, Gherbi H (2014) Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation? Curr Opin Plant Biol 20:11–18

    Article  PubMed  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52

    CAS  PubMed  Google Scholar 

  • Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho K, Hashiguchi M, Akashi R, Hirsch AM, Arima S, Suzuki A (2009) Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation of Lotus japonicus. Plant Physiol 151(4):1965–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinchant JC, Rigaud J (1982) Nitrite and nitric oxide as inhibitors of nitrogenase from soybean bacteroids. Appl Environ Microbiol 44(6):1385–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4. doi:10.3389/fpls.2013.00356

  • Van de Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141(2):711–720

    Article  PubMed  PubMed Central  Google Scholar 

  • VanessaCoats VC, Christa RSRS, John DTDT (2009) Truncated hemoglobins in Frankia CcI3: effects of nitrogen source, oxygen concentration, and nitric oxide. Can J Microbiol 55(7):867–873

    Article  Google Scholar 

  • Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172(8):4295–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Vieweg MF, Hohnjec N, Kuster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220(5):757–766

    Article  CAS  PubMed  Google Scholar 

  • Wally OS, Mira MM, Hill RD, Stasolla C (2013) Hemoglobin regulation of plant embryogenesis and plant pathogen interaction. Plant Signal Behav 8(8)

    Google Scholar 

  • Wang Y, Yang Q, Tosa Y, Nakayashiki H, Mayama S (2005) Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J Gen Plant Pathol 71(1):33–38

    Article  CAS  Google Scholar 

  • Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman F-A (2014) Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. Plant Cell 26:353–372. doi:10.1105/tpc.113.120121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17(12):1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Weissman L, Garty J, Hochman A (2005) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microbiol 71(4):2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146(4):1920–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarullina DR, Asafova EV, Kartunova JE, Ziyatdinova GK, Ilinskaya ON (2014) Probiotics for plants: NO-producing lactobacilli protect plants from drought. Appl Biochem Microbiol 50(2):166–168

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2015) Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol 56(6):1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KA, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jocker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe BA (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJC (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202(4):1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Zhang RQ, Zhu HH, Zhao HQ, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170(1):74–79

    Article  CAS  PubMed  Google Scholar 

  • Zimmer-Prados LM, Moreira AS, Magalhaes JR, Franca MG (2014) Nitric oxide increases tolerance responses to moderate water deficit in leaves of Phaseolus vulgaris and Vigna unguiculata bean species. Physiol Mol Biol Plant 20(3):295–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Brouquisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hichri, I. et al. (2016). Nitric Oxide: A Multitask Player in Plant–Microorganism Symbioses. In: Lamattina, L., García-Mata, C. (eds) Gasotransmitters in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-40713-5_12

Download citation

Publish with us

Policies and ethics