Neurological Classifier Committee Based on Artificial Neural Networks and Support Vector Machine for Single-Trial EEG Signal Decoding

  • Konstantin SonkinEmail author
  • Lev Stankevich
  • Yulia Khomenko
  • Zhanna Nagornova
  • Natalia Shemyakina
  • Alexandra Koval
  • Dmitry Perets
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9719)


This study aimed to finding effective approaches for electroencephalographic (EEG) multiclass classification of imaginary movements. The combined classifier of EEG signals based on artificial neural network (ANN) and support vector machine (SVM) algorithms was applied. Effectiveness of the classifier was shown in 4-class imaginary finger movement classification. Nine right-handed subjects participated in the study. The mean decoding accuracy using combined heterogeneous classifier committee was −60 ± 10 %, max: 77 ± 5 %, while application of homogeneous classifier based on committee of ANNs −52 ± 9 % and 65 ± 5 % correspondingly. This work supports the feasibility of the approach, which is presumed suitable for imaginary movements decoding of four fingers of one hand. These results could be used for development of effective non-invasive BCI with enlarged amount of degrees of freedom.


Electroencephalography Classifier committee Artificial neural network Support vector machine Imaginary finger movements 



The study was supported by the RFBR foundation grant № 13-01-12059 ofi-m.


  1. 1.
    Chai, R., Ling, S.H., Hunter, G.P., Tran, Y., Nguyen, H.T.: Brain-computer interface classifier for wheelchair commands using neural network with fuzzy particle swarm optimization. IEEE J. Biomed. Health. Inform. 18(5), 1614 (2014)CrossRefGoogle Scholar
  2. 2.
    Brunner, C., Birbaumer, N., Blankertz, B., Guger, C., Kübler, A., Mattia, D., Millan, J.R., Miralles, F., Nijholt, A., Opisso, E., Ramsey, N., Salomon, P., Müller-Putz, G.R.: BNCI Horizon 2020: towards a roadmap for the BCI community. Brain-Comput. Interfaces 2(1), 1–10 (2015)CrossRefGoogle Scholar
  3. 3.
    Wolpaw, J.R., Wolpaw, E.W.: Brain Computer Interfaces: Principles and Practice. Oxford Univ. Press, New York (2012)CrossRefGoogle Scholar
  4. 4.
    Xiao, R., Ding, L.: EEG resolutions in detecting and decoding finger movements from spectral analysis. Front Neurosci. 9, 308 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Quandt, F., Reichert, C., Hinrichs, H., Heinze, H.J., Knight, R.T., Rieger, J.W.: Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study. NeuroImage 59, 3316–3324 (2012)CrossRefGoogle Scholar
  6. 6.
    Sonkin, K.M., Stankevich, L.A., Khomenko, Y., Nagornova, Z., Shemyakina, N.V.: Classification of electroencephalographic patterns of imagined and real movements by one hand fingers using the support vectors method. Pac. Med. J. 2, 30–35 (2014)Google Scholar
  7. 7.
    Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4, 1–24 (2007)CrossRefGoogle Scholar
  8. 8.
    Lazurenko, D.M., Shepelev, I.E., Kiroy, V.N., Aslanyan, E.V., Bakhtin, O.M., Minyaeva, N.R.: Ideomotor EEG patterns in the profile of brain-computer interface. In: Ivanova, G.E. (ed.) Selected Topics of Neurorehabilitation: Proceedings of VII International Congress Neurorehabilitation-2015, pp. 246–249 (2015). (Russian)Google Scholar
  9. 9.
    Sonkin, K.M., Stankevich, L.A., Khomenko, J., Nagornova, Z., Shemyakina, N.V.: Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand. Artif. Intell. Med. 63(2), 107–117 (2015)CrossRefGoogle Scholar
  10. 10.
    Shawe-Taylor, J., Cristianini, N.: Kernell Methods for Pattern Analysis. Cambridge Univesity Press, New York (2004)CrossRefGoogle Scholar
  11. 11.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)CrossRefGoogle Scholar
  12. 12.
    Stankevich, L.A., Sonkin, K.M., Shemyakina, N.V., Nagornova, Z., Khomenko, Y., Perets, D.S., Koval, A.V.: Pattern decoding of rhythmic individual finger imaginary movements of one hand. Hum. Physiol. 42(1), 32–42 (2016)CrossRefGoogle Scholar
  13. 13.
    Stankevich, L.A., Sonkin, K.M., Nagornova, Z.V., Khomenko, J.G., Shemyakina, N.V: Classification of electroencephalographic patterns of imaginary one-hand finger movements for brain-computer interface development. SPIIRAS Proc. 3(40), 163–182 (2015)Google Scholar
  14. 14.
    Lemos, M.S., Fisch, B.J.: The weighted average reference montage. Electroencephalogr. Clin. Neurophysiol. 79(5), 361 (1991)CrossRefGoogle Scholar
  15. 15.
    Xiao, R., Ding, L.: Evaluation of EEG features in decoding individual finger movements from one hand. Comput. Math. Methods Med., 243 (2013)Google Scholar
  16. 16.
    Sotnikov, P.I.: Optimal EEG signal frequency ranges selection in brain-computer interface. Sci. Educ., 217–234 (2015)Google Scholar
  17. 17.
    Basterrech, S., Bobrov, P., Frolov, A., Húsek, D.: Nature-inspired algorithms for selecting EEG sources for motor imagery based BCI. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 79–90. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Friedrich, E.V.C., Neuper, C., Scherer, R.: Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS ONE 8(9), e76214 (2013)CrossRefGoogle Scholar
  19. 19.
    Daly, I., Billinger, M., Laparra-Hernandez, J., Aloise, F., Garcia, M.L., Faller, J., Scherer, R., Muller-Putz, G.: On the control of brain-computer interfaces by users with cerebral palsy. Clin. Neurophysiol. 124, 1787–1797 (2013)CrossRefGoogle Scholar
  20. 20.
    Liao, K., Xiao, R., Gonzalez, J., Ding, L.: Decoding individual finger movements from one hand using human EEG signals. PLoS ONE 9(1), e85192 (2014)CrossRefGoogle Scholar
  21. 21.
    Asensio-Cubero, J., Gan, J.Q., Palaniappan, R.: Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput. Biol. Med. 68(1), 21–26 (2016)CrossRefGoogle Scholar
  22. 22.
    Shan, H., Xu, H., Zhu, S., He, B.: A novel channel selection method for optimal classification in different motor imagery BCI paradigms. Biomed. Eng. Online 14, 93 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konstantin Sonkin
    • 1
    Email author
  • Lev Stankevich
    • 1
  • Yulia Khomenko
    • 2
  • Zhanna Nagornova
    • 3
  • Natalia Shemyakina
    • 3
  • Alexandra Koval
    • 1
  • Dmitry Perets
    • 1
  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  2. 2.N.P. Bechtereva Institute of Human BrainRussian Academy of SciencesSt. PetersburgRussia
  3. 3.I.M. Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations