Advertisement

An Investigation of Leap Motion Based 3D Manipulation Techniques for Use in Egocentric Viewpoint

  • Giuseppe CaggianeseEmail author
  • Luigi Gallo
  • Pietro Neroni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9769)

Abstract

In this paper we investigate suitable 3D manipulation techniques for a new generation of depth trackers exploitable in ego-vision for an immersive virtual environment. After presenting the specific configuration and hardware used, the paper focuses on an investigation into the advantages and disadvantages of the various techniques in order to choose the one most suitable for the manipulation of an object in an immersive virtual environment. We have faced the problem of canonical manipulation which includes, besides the selection, the positioning and rotation. Two different approaches are described allowing respectively a direct or constrained manipulation of the virtual object. Our aim is to evaluate the perceived usability of the two proposed manipulation techniques in the specific configuration and for this reason qualitative data have been gathered using the System Usability Scale questionnaire. The results show a different level of difficulty perceived by the testers between the two canonical manipulation techniques and a general preference for techniques that prove to be less tiring.

Keywords

3D manipulation Ego-vision Leap Motion Immersive virtual environments Questionnaire evaluation 

References

  1. 1.
  2. 2.
    Leap motion controller. https://www.leapmotion.com/
  3. 3.
    Boring, S., Jurmu, M., Butz, A.: Scroll, tilt or move it: using mobile phones to continuously control pointers on large public displays. In: Proceedings of the 21st Annual Conference of the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, OZCHI 2009, pp. 161–168. ACM, New York (2009)Google Scholar
  4. 4.
    Bowman, D.A., Hodges, L.F.: An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 35–ff. ACM (1997)Google Scholar
  5. 5.
    Bowman, D.A., Koller, D., Hodges, L.F.: Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques. In: Virtual Reality Annual International Symposium, pp. 45–52. IEEE (1997)Google Scholar
  6. 6.
    Bowman, D.A., Kruijff, E., LaViola Jr., J.J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley, Boston (2004)Google Scholar
  7. 7.
    Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Touchless target selection techniques for wearable augmented reality systems. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G. (eds.) Intelligent Interactive Multimedia Systems and Services, pp. 1–9. Springer, Cham (2015)Google Scholar
  8. 8.
    Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Weerdmeester, B., Thomas, A., Mclelland, I.L. (eds.) Usability Evaluation in Industry. Taylor and Francis, London (1996)Google Scholar
  9. 9.
    Essmaeel, K., Gallo, L., Damiani, E., Dipanda, A., De Pietro, G.: Comparative evaluation of methods for filtering kinect depth data. Multimedia Tools Appl. 74(17), 7331–7354 (2015)CrossRefGoogle Scholar
  10. 10.
    Foley, J.D., Wallace, V.L., Chan, P.: The human factors of computer graphics interaction techniques. IEEE Comput. Graph. Appl. 4(11), 13–48 (1984)CrossRefGoogle Scholar
  11. 11.
    Gallo, L., Minutolo, A.: Design and comparative evaluation of smoothed pointing: a velocity-oriented remote pointing enhancement technique. Int. J. Hum. Comput. Stud. 70(4), 287–300 (2012)CrossRefGoogle Scholar
  12. 12.
    Grossman, T., Wigdor, D., Balakrishnan, R.: Multi-finger gestural interaction with 3D volumetric displays. In: Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology, pp. 61–70. ACM (2004)Google Scholar
  13. 13.
    Jacob, R.J., Sibert, L.E., McFarlane, D.C., Jr. Mullen, M.P.: Integrality and separability of input devices. ACM Trans. Comput. Hum. Interact. (TOCHI) 1(1), 3–26 (1994)CrossRefGoogle Scholar
  14. 14.
    Knight, J.L.: Manual control and tracking. In: Salvendy, G. (ed.) Handbook of Human Factors, pp. 182-218 (1987)Google Scholar
  15. 15.
    Kopper, R., Bacim, F., Bowman, D.A.: Rapid and accurate 3D selection by progressive refinement. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 67–74. IEEE (2011)Google Scholar
  16. 16.
    Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140), 5–55 (1932)Google Scholar
  17. 17.
    Lucas, J.F.: Design and Evaluation of 3D Multiple Object Selection Techniques, M.Sc thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA (2005)Google Scholar
  18. 18.
    Luo, X., Kenyon, R.V.: Scalable vision-based gesture interaction for cluster-driven high resolution display systems. In: Virtual Reality Conference, VR 2009, pp. 231–232. IEEE (2009)Google Scholar
  19. 19.
    Mine, M., et al.: Virtual environment interaction techniques. UNC Chapel Hill Computer Science Technical report TR95-018, 507248–2 (1995)Google Scholar
  20. 20.
    Poupyrev, I., Ichikawa, T., Weghorst, S., Billinghurst, M.: Egocentric object manipulation in virtual environments: empirical evaluation of interaction techniques. In: Computer Graphics Forum, vol. 17, pp. 41–52. Wiley Online Library (1998)Google Scholar
  21. 21.
    Poupyrev, I., Ichikawa, T.: Manipulating objects in virtual worlds: Categorization and empirical evaluation of interaction techniques. J. Vis. Lang. Comput. 10(1), 19–35 (1999)CrossRefGoogle Scholar
  22. 22.
    Segen, J., Kumar, S.: Gesture VR: vision-based 3D hand interace for spatial interaction. In: Proceedings of the Sixth ACM International Conference on Multimedia, pp. 455–464. ACM (1998)Google Scholar
  23. 23.
    Song, P., Goh, W.B., Hutama, W., Fu, C.W., Liu, X.: A handle bar metaphor for virtual object manipulation with mid-air interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1297–1306. ACM (2012)Google Scholar
  24. 24.
    Stoakley, R., Conway, M.J., Pausch, R.: Virtual reality on a WIM: interactive worlds in miniature. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 265–272. ACM Press/Addison-Wesley Publishing Co. (1995)Google Scholar
  25. 25.
    Uebersax, J.S.: Likert scales: Dispelling the confusion. http://www.john-uebersax.com/stat/likert.htm
  26. 26.
    Zhai, S.: Human performance in six degree of freedom input control. Ph.D. thesis, University of Toronto (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giuseppe Caggianese
    • 1
    Email author
  • Luigi Gallo
    • 1
  • Pietro Neroni
    • 1
  1. 1.Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR)NaplesItaly

Personalised recommendations