A User Study on Touch Interaction for User-Perspective Rendering in Hand-Held Video See-Through Augmented Reality

  • Ali Samini
  • Karljohan Lundin Palmerius
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9769)


This paper presents a user study on touch interaction with hand-held Video See-through Augmented Reality (V-AR). In particular, the commonly used Device Perspective Rendering (DPR) is compared with User Perspective Rendering (UPR) with respect to both performance and user experience and preferences. We present two user study tests designed to mimic the tasks that are used in various AR applications.

Looking for an object and selecting when it’s found, is one of the most used tasks in AR software. Our first test focuses on comparing UPR and DPR in a simple find and selection task. Manipulating the pose of a virtual object is another commonly used task in AR. The second test focuses on multi-touch interaction for 6 DoF object pose manipulation through UPR and DPR.


User perspective rendering Augmented reality Touch interaction Video see-through 


  1. 1.
    Van Krevelen, D.W.F., Poelman, R.: A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Reality 9(2), 1 (2010)Google Scholar
  2. 2.
    Wagner, D., Schmalstieg, D.: First steps towards handheld augmented reality. IEEE (2003)Google Scholar
  3. 3.
    Liu, T.Y., Tan, T.H., Chu, Y.L.: 2d barcode and augmented reality supported english learning system. In: 6th IEEE/ACIS International Conference on Computer and Information Science, 2007. ICIS 2007, pp. 5–10, July 2007Google Scholar
  4. 4.
    Rekimoto, J.: Transvision: a hand-held augmented reality system for collaborative design (1996)Google Scholar
  5. 5.
    Dunser, A., Billinghurst, M., Wen, J., Lehtinen, V., Nurminen, A.: Technical section: exploring the use of handheld ar for outdoor navigation. Comput. Graph 36(8), 1084–1095 (2012)CrossRefGoogle Scholar
  6. 6.
    Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI 2011, New York, NY, USA, pp. 211–220. ACM (2011)Google Scholar
  7. 7.
    Squire, K.D., Jan, M.: Mad city mystery: developing scientific argumentation skills with a place-based augmented reality game on handheld computers. J. Sci. Edu. Technol. 16(1), 5–29 (2007)CrossRefGoogle Scholar
  8. 8.
    Huynh, D.-N.T., Raveendran, K., Xu, Y., Spreen, K., MacIntyre, B.: Art of defense: a collaborative handheld augmented reality board game. In: Proceedings of the ACM SIGGRAPH Symposium on Video Games, Sandbox 2009, New York, NY, USA, pp. 135–142. ACM (2009)Google Scholar
  9. 9.
    Mossel, A., Venditti, B., Kaufmann, H.: Drillsample: precise selection in dense handheld augmented reality environments. In: Proceedings of the Virtual Reality International Conference: Laval Virtual, p. 10. ACM (2013)Google Scholar
  10. 10.
    Wagner, D., Pintaric, T., Ledermann, F., Schmalstieg, D.: Towards massively multi-user augmented reality on handheld devices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jung, J., Hong, J., Park, S., Yang, H.S.: Smartphone as an augmented reality authoring tool via multi-touch based 3D interaction method. In: Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, VRCAI 2012, New York, NY, USA, pp. 17–20. ACM (2012)Google Scholar
  12. 12.
    Yoshida, T., Kuroki, S., Nii, H., Kawakami, N., Tachi, S.: ARscope. In: ACM SIGGRAPH 2008 New Tech Demos, SIGGRAPH 2008, New York, NY, USA, p. 4:1. ACM (2008)Google Scholar
  13. 13.
    Hill, A., Schiefer, J., Wilson, J., Davidson, B., Gandy, M., MacIntyre, B.: Virtual transparency: introducing parallax view into video see-through AR. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 239–240 (2011)Google Scholar
  14. 14.
    Tomioka, M., Ikeda, S., Sato, K.: Approximated user-perspective rendering in tablet-based augmented reality. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 21–28, October 2013Google Scholar
  15. 15.
    Samini, A., Palmerius, K.L.: A perspective geometry approach to user-perspective rendering in hand-held video see-through augmented reality. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, VRST 2014, New York, NY, USA, pp. 207–208. ACM (2014)Google Scholar
  16. 16.
    Samini, A., Palmerius, K.L.: Device registration for 3D geometry-based user-perspective rendering in hand-held video see-through augmented reality. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2015. LNCS, vol. 9254, pp. 151–167. Springer, Switzerland (2015)Google Scholar
  17. 17.
    Steinicke, F., Bruder, G., Kuhl, S.: Realistic perspective projections for virtual objects, environments. ACM Trans. Graph. 30(5), 112:1–112:10 (2011)CrossRefGoogle Scholar
  18. 18.
    Baricevic, D., Lee, C., Turk, M., Hollerer, T., Bowman, D.A.: A hand-held AR magic lens with user-perspective rendering. In: 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 197–206, November 2012Google Scholar
  19. 19.
    Taylor, R.M., II, Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST 2001, New York, NY, USA, pp. 55–61. ACM (2001)Google Scholar
  20. 20.
    SDL: Simple directmedia layer.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Science and TechnologyLinköping UniversityLinköpingSweden

Personalised recommendations