Automated Synthesis of Safe Autonomous Vehicle Control Under Perception Uncertainty

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9690)

Abstract

Autonomous vehicles have found wide-ranging adoption in aerospace, terrestrial as well as marine use. These systems often operate in uncertain environments and in the presence of noisy sensors, and use machine learning and statistical sensor fusion algorithms to form an internal model of the world that is inherently probabilistic. Autonomous vehicles need to operate using this uncertain world-model, and hence, their correctness cannot be deterministically specified. Even once probabilistic correctness is specified, proving that an autonomous vehicle will operate correctly is a challenging problem. In this paper, we address these challenges by proposing a correct-by-synthesis approach to autonomous vehicle control. We propose a probabilistic extension of temporal logic, named Chance Constrained Temporal Logic (C2TL), that can be used to specify correctness requirements in presence of uncertainty. We present a novel automated synthesis technique that compiles C2TL specification into mixed integer constraints, and uses second-order (quadratic) cone programming to synthesize optimal control of autonomous vehicles subject to the C2TL specification. We demonstrate the effectiveness of the proposed approach on a diverse set of illustrative examples.

References

  1. 1.
    Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems. Automatica 44(11), 2724–2734 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Acikmese, B., Acikmese, S.R.: Convex programming approach to powered descent guidance for mars landing. J. Guid. Control Dyn. 30(5), 1353–1366 (2007)CrossRefGoogle Scholar
  3. 3.
    Andersen, M.S., Dahl, J., Vandenberghe, L.: Cvxopt: a python package for convex optimization, version 1.1.6. (2013). cvxopt.org
  4. 4.
    Åström, K.J.: Introduction to stochastic control theory. Courier Corporation (2012)Google Scholar
  5. 5.
    Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II. J. Guid. Control Dyn. 13(3), 108–117 (2006)Google Scholar
  6. 6.
    Barr, N.M., Gangsaas, D., Schaeffer, D.R.: Wind models for flight simulator certification of landing and approach guidance and control systems. Technical report, DTIC Document (1974)Google Scholar
  7. 7.
    Bellman, R.: Introduction to the mathematical theory of control processes, vol. 2. IMA (1971)Google Scholar
  8. 8.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Meth. Softw. 24, 597–634 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bernini, N., Bertozzi, M., Castangia, L., Patander, M., Sabbatelli, M.: Real-time obstacle detection using stereo vision for autonomous ground vehicles: a survey. In: ITSC, pp. 873–878. IEEE (2014)Google Scholar
  10. 10.
    Broggi, A.: Autonomous vehicles control in the vislab intercontinental autonomous challenge. J. Guid. Control Dyn. 36(1), 161–171 (2012)Google Scholar
  11. 11.
    Cassandras, C.G., Lygeros, J.: Stochastic hybrid systems, vol. 24. CRC Press (2006)Google Scholar
  12. 12.
    Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: An approach to stochastic programming of heating oil. J. Guid. Control Dyn. 4(3), 235–263 (1958)Google Scholar
  13. 13.
    De Nijs, R., Ramos, S., Roig, G., Boix, X., Gool, L.V., Kuhnlenz, K.: On-line semantic perception using uncertainty. In: IROS, pp. 4185–4191. IEEE (2012)Google Scholar
  14. 14.
    Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer Science & Business Media, New York (2013)MATHGoogle Scholar
  15. 15.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Raman, V., et al.: Model predictive control with signal temporal logic specifications. In: CDC, pp. 81–87, December 2014Google Scholar
  17. 17.
    Koutsoukos, X.D., Riley, D.: Computational methods for reachability analysis of stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 377–391. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 200. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 32(1–2), 25–45 (2008)CrossRefGoogle Scholar
  20. 20.
    Martinet, P., Laugier, C., Nunes, U.: Special issue on perception and navigation for autonomous vehicles (2014)Google Scholar
  21. 21.
    Mathys, C.D., et al.: Uncertainty in perception and the hierarchical gaussian filter. Front. Hum. Neurosci. 8(825) (2014)Google Scholar
  22. 22.
    McGee, T.G., Sengupta, R., Hedrick, K.: Obstacle detection for small autonomous aircraft using sky segmentation. In: ICRA 2005, pp. 4679–4684. IEEE (2005)Google Scholar
  23. 23.
    Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a system for autonomous flight using onboard computer vision. In: ICRA, pp. 2992–2997. IEEE (2011)Google Scholar
  24. 24.
    Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. J. Guid. Control Dyn. 13(6), 930–945 (1965)MATHGoogle Scholar
  25. 25.
    Nassar, M.R., et al.: An approximately bayesian delta-rule model explains the dynamics of belief updating in a changing environment. J. Guid. Control Dyn. 30(37), 12366–12378 (2010)Google Scholar
  26. 26.
    Patchett, C., Jump, M., Fisher, M.: Safety and certification of unmanned air systems. Eng. Technol. Ref. 1(1) (2015)Google Scholar
  27. 27.
    Pnueli, A.: The temporal logic of programs. In: Providence, pp. 46–57 (1977)Google Scholar
  28. 28.
    Pontryagin, L.S.: Optimal control processes. Usp. Mat. Nauk 14(3), 3–20 (1959)Google Scholar
  29. 29.
    Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case, stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Prandini, M., Hu, J.: Stochastic reachability: theory and numerical approximation. J. Guid. Control Dyn. 24, 107–138 (2006)MATHGoogle Scholar
  31. 31.
    Prékopa, A.: Stochastic Programming, vol. 324. Springer, Netherlands (2013)MATHGoogle Scholar
  32. 32.
    Rouff, C., Hinchey, M.: Experience from the DARPA urban challenge. Springer Science & Business Media, London (2011)Google Scholar
  33. 33.
    Rushby, J.: New challenges in certification for aircraft software. In: EMSOFT, pp. 211–218. ACM (2011)Google Scholar
  34. 34.
    Terwilliger, B.A., Ison, D.C., Vincenzi, D.A., Liu, D.: Advancement and application of unmanned aerial system Human-Machine-Interface (HMI) technology. In: Yamamoto, S. (ed.) HCI 2014, Part II. LNCS, vol. 8522, pp. 273–283. Springer, Heidelberg (2014)Google Scholar
  35. 35.
    Van Den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. J. Guid. Control Dyn. 30(7), 895–913 (2011)Google Scholar
  36. 36.
    Vitus, M.: Stochastic Control Via Chance Constrained Optimization and its Application to Unmanned Aerial Vehicles. PhD thesis, Stanford University (2012)Google Scholar
  37. 37.
    Vitus, M.P., Tomlin, C.J.: Closed-loop belief space planning for linear, Gaussian systems. In: ICRA, pp. 2152–2159. IEEE (2011)Google Scholar
  38. 38.
    Vitus, M.P., Tomlin, C.J.: On feedback design and risk allocation in chance constrained control. J. Guid. Control Dyn. 2011, 734–739 (2011)Google Scholar
  39. 39.
    Vitus, M.P., Tomlin, C.J.: A hybrid method for chance constrained control in uncertain environments. In: CDC, pp. 2177–2182, December 2012Google Scholar
  40. 40.
    Vitus, M.P., Tomlin, C.J.: A probabilistic approach to planning and control in autonomous urban driving. In: CDC, pp. 2459–2464 (2013)Google Scholar
  41. 41.
    Xu, W., Pan, J., Wei, J., Dolan, J.M.: Motion planning under uncertainty for on-road autonomous driving. In: ICRA, pp. 2507–2512. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.United Technology Research CenterBerkeleyUSA

Personalised recommendations