The Virtual Experiences Portals — A Reconfigurable Platform for Immersive Visualization

  • Ian D. Peake
  • Jan Olaf Blech
  • Edward Watkins
  • Stefan Greuter
  • Heinz W. Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9768)

Abstract

Virtual Experience Portals are mobile stereoscopic ultra high definition LCD displays with human interface sensors, which can be combined into a reconfigurable development platform for shared immersive virtual and augmented reality experiences. We are targeting applications in, for example, industrial automation, serious games, scientific visualization and building architecture. The aim is to provide a framework for natural and effortless interfaces for shared small group experiences of interactive 3D content, combining selected existing elements of computer aided virtual environments and virtual reality. In this short paper we report on efforts to date in developing the platform, integration with an existing visualization framework, SAGE2, some short application case studies, one in an industry-sponsored research context in industrial automation, and some ideas for future work.

References

  1. 1.
    Blech, J.O., Peake, I., Schmidt, H., Kande, M., Rahman, A., Ramaswamy, S., Sudarsan S.D., Narayanan, V.: Efficient incident handling in industrial automation through collaborative engineering. In: Emerging Technologies and Factory Automation (ETFA). IEEE (2015)Google Scholar
  2. 2.
    Blech, J.O., Schmidt, H.: BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems, (2014). http://arxiv.org/abs/1404.3537.arXiv.org
  3. 3.
    Blech, J.O., Spichkova, M., Peake, I., Schmidt, H.: Cyber-Virtual Systems: Simulation, Validation & Visualization. In: Evaluation of Novel Approaches to Software Engineering. SciTePress ISBN 978-989-758-030-7 (2014)Google Scholar
  4. 4.
    Paul, B.: Virtual Containment Vessel now known as VROOM. http://paulbourke.net/exhibition/vroom/. Accessed 21 Mar 2016
  5. 5.
    Cruz-Neira, C., Sandin, D., Defanti, T., Kenyon, R., Hart, J.: The CAVE: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–72 (1992)CrossRefGoogle Scholar
  6. 6.
    DeFanti, T.A., et al.: The future of the CAVE. Cent. Eur. J. Eng. 1(1), 16–37 (2011)Google Scholar
  7. 7.
    Febretti, Alessandro, et al.: CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics (2013)Google Scholar
  8. 8.
    Greuter, S., Roberts, D.J.: Controlling viewpoint from markerless head tracking in an immersive ball game using a commodity depth-based camera. J. Simul. 9(1), 54–63 (2015)CrossRefGoogle Scholar
  9. 9.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)CrossRefGoogle Scholar
  10. 10.
    Kenderdine, S., Hart, T.: This is not a peep show. the virtual room at melbourne museum (VROOM). In: ICHIM (2003)Google Scholar
  11. 11.
    Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)CrossRefGoogle Scholar
  12. 12.
    Kooima, R.: Generalized perspective projection. LSU Computer Science and Engineering Division (2009). http://csc.lsu.edu/kooima/articles/genperspective/June
  13. 13.
    Marrinan, T., et al.: SAGE2: a new approach for data intensive collaboration using scalable resolution shared displays. In: 2014 International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom). IEEE (2014)Google Scholar
  14. 14.
    Machida, E., Cao, M., Murao, T., Hashi, H.: Human motion tracking of mobile robot with Kinect 3D sensor. In: Proceedings of SICE. IEEE (2012)Google Scholar
  15. 15.
    Popolin Neto, M., Remo Ferreira Brega, J.: A survey of solutions for game engines in the development of immersive applications for multi-projection systems as base for a generic solution design. In: 2015 XVII Symposium on Virtual and Augmented Reality (SVR). IEEE (2015)Google Scholar
  16. 16.
    Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based 3D tracking of hand articulations using kinect. BMVC 1(2), 3 (2011)Google Scholar
  17. 17.
    Peake, I., Blech, J.O., Fernando, L., Schmidt, H., Sreenivasamurthy, R., Sudarsan S.D.: Visualization facilities for distributed and remote industrial automation: VxLab. In: ETFA. IEEE (2015)Google Scholar
  18. 18.
    Sandin, D.J., et al.: The varrier\(^{TM}\) autostereoscopic virtual reality display. ACM Trans. Graph. (TOG) 24(3), 894–903 (2005)CrossRefGoogle Scholar
  19. 19.
    Peake, I.D., Vuyyuru, A., Blech, J.O., Vergnaud, N., Fernando, L.: Cloud-based analysis and control for robots in industrial automation. In: Automated Testing of Cyber-Physical Systems in the Cloud. IEEE (2015)Google Scholar
  20. 20.
    VROOM at RMIT GEElab. http://www.geelab.rmit.edu.au/content/vroom. Accessed 21 Mar 2016

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ian D. Peake
    • 1
  • Jan Olaf Blech
    • 1
  • Edward Watkins
    • 1
  • Stefan Greuter
    • 1
  • Heinz W. Schmidt
    • 1
  1. 1.RMIT UniversityMelbourneAustralia

Personalised recommendations