Application of a Mamdani-Type Fuzzy Rule-Based System to Segment Periventricular Cerebral Veins in Susceptibility-Weighted Images

  • Francesc Xavier AymerichEmail author
  • Pilar Sobrevilla
  • Eduard Montseny
  • Alex Rovira
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 610)


This paper presents an algorithm designed to segment veins in the periventricular region of the brain in susceptibility-weighted magnetic resonance images. The proposed algorithm is based on a Mamdani-type fuzzy rule-based system that enables enhancement of veins within periventricular regions of interest as the first step. Segmentation is achieved after determining the cut-off value providing the best trade-off between sensitivity and specificity to establish the suitability of each pixel to belong to a cerebral vein. Performance of the algorithm in susceptibility-weighted images acquired in healthy volunteers showed very good segmentation, with a small number of false positives. The results were not affected by small changes in the size and location of the regions of interest. The algorithm also enabled detection of differences in the visibility of periventricular veins between healthy subjects and multiple sclerosis patients.


Brain Fuzzy rule-based systems Image segmentation Magnetic resonance imaging 


  1. 1.
    Haacke, E.M., Xu, Y.B., Cheng, Y.C.N., Reichenbach, J.R.: Susceptibility weighted imaging (SWI). MRM 52, 1–40 (2004)CrossRefGoogle Scholar
  2. 2.
    Mittal, S., Wu, Z., Neelavalli, J., Haacke, E.M.: Susceptibility-weighted imaging: technical aspects and clinical applications, Part 2. Am. J. Neuroradiol. 30, 232–252 (2009)CrossRefGoogle Scholar
  3. 3.
    Ge, Y., Zohrabian, V.M., Osa, E., et al.: Diminished visibility of cerebral venous vasculature in MS by susceptibility-weighted imaging at 3.0 Tesla. JMRI 29, 1190–1194 (2009)CrossRefGoogle Scholar
  4. 4.
    Suri, J.S., Liu, K.C., Reden, L., et al.: A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans. IT Biomed. 6, 338–350 (2002)CrossRefGoogle Scholar
  5. 5.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. MIA 13, 819–845 (2009)Google Scholar
  6. 6.
    Haacke, E.M., Reichenbach, J.R.: Susceptibility Weighted Imaging in MRI: Basic Concepts and Clinical Applications. Willey, Hoboken (2011)CrossRefGoogle Scholar
  7. 7.
    Frangi, A.F., Niessen, W.J., Hoogeveen, R.M., et al.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18, 946–956 (1999)CrossRefGoogle Scholar
  8. 8.
    Sato, Y., Nakajima, S., Shiraga, N., et al.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. MIA 2, 143–168 (1998)Google Scholar
  9. 9.
    Lorenz, C., Carlsen, I.C., Buzug, T.M., et al.: A multi-scale line filter with automatic scale selection based on the Hessian matrix for medical image segmentation. In: ter Haar, R.B., Florack, L., Koenderink, J., et al. (eds.) Scale-Space Theory in Computer Vision, pp. 152–163 (1997)Google Scholar
  10. 10.
    Grabner, G., Dal-Bianco, A., Hametner, S., et al.: Group specific vein-atlasing: an application for analyzing the venous system under normal and MS conditions. JMRI 40, 655–661 (2014)CrossRefGoogle Scholar
  11. 11.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion - a scale space representation of vessel structures. MIA 10, 815–825 (2006)Google Scholar
  12. 12.
    Koopmans, P.J., Manniesing, R., Niessen, W.J., et al.: MR venography of the human brain using susceptibility weighted imaging at very high field strength. MAGMA 21, 149–158 (2008)CrossRefGoogle Scholar
  13. 13.
    Zivadinov, R., Poloni, G.U., Marr, K., et al.: Decreased brain venous vasculature visibility on susceptibility-weighted imaging venography in patients with multiple sclerosis is related to chronic cerebrospinal venous insufficiency. BMC Neurol. 11, 128 (2011). CrossRefGoogle Scholar
  14. 14.
    Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. AIM 16, 149–169 (1999)Google Scholar
  15. 15.
    Mehta, S.B., Chaudhury, S., Bhattacharyya, A., Jena, A.: Soft-computing based diagnostic tool for analyzing demyelination in magnetic resonance images. ASOC 10, 529–538 (2010)Google Scholar
  16. 16.
    Zarandi, M.H.F., Zarinbal, M., Izadi, M.: Systematic image processing for diagnosing brain tumors: a type-II fuzzy expert system approach. ASOC 11, 285–294 (2011)Google Scholar
  17. 17.
    Forkert, N.D., Schmidt-Richberg, A., Fiehler, J., et al.: Fuzzy-based vascular structure enhancement in Time-of-Flight MRA images for improved segmentation. Methods Inf. Med. 50, 74–83 (2011)CrossRefGoogle Scholar
  18. 18.
    Forkert, N.D., Schmidt-Richberg, A., Fiehler, J., et al.: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. MRI 31, 262–271 (2013)CrossRefGoogle Scholar
  19. 19.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., et al.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13, 856–876 (2001)CrossRefGoogle Scholar
  20. 20.
    Rorden, C., Brett, M.: Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200 (2000)CrossRefGoogle Scholar
  21. 21.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. London 121, 1585–1588 (1974)CrossRefGoogle Scholar
  22. 22.
    Haehn, D.: The Vascular Modeling Toolkit in 3D Slicer (Modules: VMTKVessel Enhancement) (2010). Accessed 27 March 2015
  23. 23.
    Pieper, S., Lorensen, B, Schroeder, W., Kikinis, R.: The NA-MIC kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In: 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, vol. 1–3, pp. 698–701 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesc Xavier Aymerich
    • 1
    • 2
    Email author
  • Pilar Sobrevilla
    • 3
  • Eduard Montseny
    • 2
  • Alex Rovira
    • 1
  1. 1.MR Unit, Department of Radiology (IDI), Vall d’Hebron University Hospital, Vall d’Hebron Research Institute (VHIR)Autonomous University of BarcelonaBarcelonaSpain
  2. 2.ESAII DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.MAII DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations