Advertisement

Static VS Dynamic Reversibility in CCS

  • Doriana Medić
  • Claudio Antares Mezzina
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)

Abstract

The notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Reversible CCS (RCCS), proposed by Danos and Krivine, enacts reversibility by means of memory stacks. Ulidowski and Phillips proposed a general method to reverse a process calculus given in a particular SOS format, by exploiting the idea of making all the operators of a calculus static. CCSK is then derived from CCS with this method. In this paper we show that RCCS is at least as expressive as CCSK.

Keywords

Operational Semantic Parallel Composition Label Transition System Transactional Model Reversible Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’ s principle linking information, thermodynamics. Nature 483(7388), 187–189 (2012)CrossRefGoogle Scholar
  2. 2.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Krivine, J.: A verification technique for reversible process algebra. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)zbMATHGoogle Scholar
  9. 9.
    Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Cluster Comput. 17(2), 303–313 (2014)CrossRefGoogle Scholar
  10. 10.
    Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IMT School for Advanced Studies LuccaLuccaItaly

Personalised recommendations