A Fast Symbolic Transformation Based Algorithm for Reversible Logic Synthesis

  • Mathias Soeken
  • Gerhard W. Dueck
  • D. Michael Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)


We present a more concise formulation of the transformation based synthesis approach for reversible logic synthesis, which is one of the most prominent explicit ancilla-free synthesis approaches. Based on this formulation we devise a symbolic variant of the approach that allows one to find a circuit in shorter time using less memory for the function representation. We present both a BDD based and a SAT based implementation of the symbolic variant. Experimental results show that both approaches are significantly faster than the state-of-the-art method. We were able to find ancilla-free circuit realizations for large optimally embedded reversible functions for the first time.


Reversible circuit synthesis Symbolic methods Binary decision diagrams Boolean satisfiability 



This research was supported by H2020-ERC-2014-ADG 669354 CyberCare and by the European COST Action IC 1405 ‘Reversible Computation’.


  1. 1.
    Alhagi, N., Hawash, M., Perkowski, M.A.: Synthesis of reversible circuits with no ancilla bits for large reversible functions specified with bit equations. In: ISMVL, pp. 39–45 (2010)Google Scholar
  2. 2.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE-TC 35(8), 677–691 (1986)zbMATHGoogle Scholar
  4. 4.
    De Vos, A., Rentergem, Y.: Young subgroups for reversible computers. Adv. Math. Commun. 2(2), 183–200 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eén, N., Mishchenko, A., Amla, N.: A single-instance incremental SAT formulation of proof- and counterexample-based abstraction. In: FMCAD, pp. 181–188 (2010)Google Scholar
  6. 6.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control Toffoli network synthesis with SAT techniques. TCAD 28(5), 703–715 (2009)Google Scholar
  7. 7.
    Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. TCAD 25(11), 2317–2330 (2006)Google Scholar
  8. 8.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: DAC, pp. 318–323 (2003)Google Scholar
  10. 10.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. JSC 2(3), 293–394 (1986)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: CP, pp. 827–831 (2005)Google Scholar
  12. 12.
    Soeken, M., Chattopadhyay, A.: Fredkin-enabled transformation-based reversible logic synthesis. In: ISMVL, pp. 60–65 (2015)Google Scholar
  13. 13.
    Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible circuit design. Multiple-Valued Logic Soft Comput. 18(1), 55–65 (2012)Google Scholar
  14. 14.
    Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large reversible functions using binary decision diagrams. JSC 73, 1–26 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP-DAC, pp. 85–92 (2012)Google Scholar
  16. 16.
    Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of large Boolean functions for reversible logic. JETC (2015). arXiv:1408.3586
  17. 17.
    Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10(9&10), 872–890 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Touati, H.J., Savoj, H., Lin, B., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Implicit state enumeration of finite state machines using BDDs. In: ICCAD, pp. 130–133 (1990)Google Scholar
  19. 19.
    Wegener, I.: The size of reduced OBDDs and optimal read-once branching programs for almost all Boolean functions. IEEE Trans. Comput. 43(11), 1262–1269 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wille, R., Große, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with output permutation. In: VLSI Design, pp. 189–194 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mathias Soeken
    • 1
  • Gerhard W. Dueck
    • 2
  • D. Michael Miller
    • 3
  1. 1.Integrated Systems Laboratory, EPFLLausanneSwitzerland
  2. 2.University of New BrunswickFrederictonCanada
  3. 3.University of VictoriaVictoriaCanada

Personalised recommendations