A Finite Alternation Result for Reversible Boolean Circuits

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)

Abstract

We say that a reversible boolean function on n bits has alternation depth\(d\) if it can be written as the sequential composition of \(d\) reversible boolean functions, each of which acts only on the top \(n-1\) bits or on the bottom \(n-1\) bits. We show that every reversible boolean function of \(n\geqslant 4\) bits has alternation depth 9.

References

  1. 1.
    De Vos, A., Raa, B., Storme, L.: Generating the group of reversible logic gates. J. Phys. A 35(33), 7063 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Musset, J.: Générateurs et relations pour les circuits booléens réversibles. Technical report 97–32, Institut de Mathématiques de Luminy (1997). http://iml.univ-mrs.fr/editions/
  3. 3.
    Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits – a survey. ACM Comput. Surv. 45(2), 34 p. (2013). arXiv:1110.2574
  4. 4.
    Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). Abridged version of Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci. (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dalhousie UniversityHalifaxCanada

Personalised recommendations