A Calculus for Local Reversibility

  • Stefan KuhnEmail author
  • Irek Ulidowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)


We introduce a process calculus with a new prefixing operator that allows us to model locally controlled reversibility. Actions can be undone spontaneously, as in other reversible process calculi, or as pairs of concerted actions, where performing a weak action forces undoing of another action. The new operator in its full generality allows us to model out-of-causal order computation, where effects are undone before their causes are undone, which goes beyond what typical reversible calculi can express. However, the core calculus, with a restricted form of the new operator, is well behaved as it satisfied causal consistency. We demonstrate the usefulness of the calculus by modelling the hydration of formaldehyde in water into methanediol, an industrially important reaction, where the creation and breaking of some bonds are examples of locally controlled out-of-causal order computation.


Reversible process calculi Local reversibility Modelling of chemical reactions 



The authors acknowledge partial support of COST Action IC1405 on Reversible Computation - extending horizons of computing.


  1. 1.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference on Computational Methods in Systems Biology, pp. 131–140. ACM (2011)Google Scholar
  3. 3.
    Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible pi-calculus. In: Proceedings of LICS 2013, pp. 388–397. IEEE, Computer Society (2013)Google Scholar
  4. 4.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings of the 1st Workshop on Concurrent Models in Molecular Biology BioConcur 2003, ENTCS, vol. 180, pp. 31–49 (2007)Google Scholar
  6. 6.
    Danos, V., Laneve, C.: Formal molecular biology. Theoret. Comput. Sci. 325(1), 69–110 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kuhn, S., Ulidowski, I.: Towards modelling of local reversibility. In: Krivine, J., Stefani, J.-B. (eds.) Reversible Computation. LNCS, vol. 9138, pp. 279–284. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled reversibility and compensations. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Milner, R.: A Calculus for Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebraic Program. 73, 70–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 303–318. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–154. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Ulidowski, I.: Equivalences on observable processes. In: Proceedings of LICS 1992, pp. 148–159. IEEE, Computer Science Press (1992)Google Scholar
  18. 18.
    Ulidowski, I., Phillips, I., Yuen, S.: Concurrency and reversibility. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 1–14. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LeicesterLeicesterUK

Personalised recommendations