Advertisement

Using \(\pi \)DDs for Nearest Neighbor Optimization of Quantum Circuits

  • Robert Wille
  • Nils Quetschlich
  • Yuma Inoue
  • Norihito Yasuda
  • Shin-ichi Minato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9720)

Abstract

Recent accomplishments in the development of quantum circuits motivated research in Computer-Aided Design for quantum circuits. Here, how to consider physical constraints in general and so-called nearest neighbor constraints in particular is an objective of recent developments. Re-ordering the given qubits in a circuit provides thereby a common strategy in order to reduce the corresponding costs. But since this leads to a significant complexity, existing solutions either worked towards a single order only (and, hence, exclude better options) or suffer from high runtimes when considering all possible options. In this work, we provide an alternative which utilizes so-called \(\pi \)DDs for this purpose. They allow for the efficient representation and manipulation of sets of permutations and, hence, provide the ideal data-structure for the considered problem. Experimental evaluations confirm that, by utilizing \(\pi \)DDs, optimal or almost optimal results can be generated in a fraction of the time needed by exact solutions.

Notes

Acknowledgments

This work has partially been supported by the EU COST Action IC1405, the JST ERATO Minato Project, as well as JSPS KAKENHI 15H05711 and 15J01665.

References

  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  3. 3.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)Google Scholar
  4. 4.
    Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. CAD 25(11), 2317–2330 (2006)CrossRefGoogle Scholar
  5. 5.
    Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 1–20 (2007)CrossRefGoogle Scholar
  6. 6.
    Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible circuits. In: International Conference on CAD, pp. 65–68 (2007)Google Scholar
  7. 7.
    Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with output permutation. In: VLSI Design, pp. 189–194 (2009)Google Scholar
  8. 8.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)CrossRefGoogle Scholar
  9. 9.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275 (2009)Google Scholar
  10. 10.
    Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for reversible logic. Microelectron. J. 41(4), 185–194 (2010)CrossRefGoogle Scholar
  11. 11.
    Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6(4), 1–26 (2010)CrossRefGoogle Scholar
  12. 12.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, pp. 85–92 (2012)Google Scholar
  13. 13.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)Google Scholar
  14. 14.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: International Symposium on Multi-valued Logic, pp. 288–293 (2011)Google Scholar
  15. 15.
    Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)Google Scholar
  16. 16.
    Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: ASP Design Automation Conference, pp. 85–92 (2013)Google Scholar
  17. 17.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. CAD 25(6), 1000–1010 (2006)CrossRefGoogle Scholar
  18. 18.
    Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. CAD 25(9), 1652–1663 (2006)CrossRefGoogle Scholar
  19. 19.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits. Multiple-Valued Logic Soft Comput. 15(4), 270–275 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Saeedi, M., Arabzadeh, M., Zamani, M.S., Sedighi, M.: Block-based quantum-logic synthesis. Quant. Inf. Comput. 11(3&4), 262–277 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Niemann, P., Wille, R., Drechsler, R.: Efficient synthesis of quantum circuits implementing Clifford group operations. In: ASP Design Automation Conference, pp. 483–488 (2014)Google Scholar
  22. 22.
    Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inf. Proc. 10(3), 355–377 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 16(1), 1–5 (2008)Google Scholar
  24. 24.
    Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)Google Scholar
  25. 25.
    Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Design Automation Conference, pp. 41–46 (2013)Google Scholar
  26. 26.
    Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor quantum circuits. In: ASP Design Automation Conference, pp. 489–494 (2014)Google Scholar
  27. 27.
    Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. CAD 33(12), 1818–1831 (2014)CrossRefGoogle Scholar
  28. 28.
    Minato, S.: \(\pi \)DD: a new decision diagram for efficient problem solving in permutation space. In: Conference on Theory and Applications of Satisfiability Testing, pp. 90–104 (2011)Google Scholar
  29. 29.
    Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quant. Inf. Comput. 4, 237–245 (2004)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)CrossRefGoogle Scholar
  31. 31.
    Ross, M., Oskin, M.: Quantum computing. Comm. ACM 51(7), 12–13 (2008)CrossRefGoogle Scholar
  32. 32.
    Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J., Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable ion traps for quantum information processing. New J. Phys. 12(3), 033031 (2010)CrossRefGoogle Scholar
  33. 33.
    Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)CrossRefGoogle Scholar
  34. 34.
    Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)CrossRefGoogle Scholar
  35. 35.
    Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)CrossRefGoogle Scholar
  36. 36.
    Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)CrossRefGoogle Scholar
  37. 37.
    Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)CrossRefGoogle Scholar
  38. 38.
    Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)Google Scholar
  39. 39.
    Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85, 062318 (2012)CrossRefGoogle Scholar
  40. 40.
    DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum electrodynamics. New J. Phys. 15(7), 075001 (2013)CrossRefGoogle Scholar
  41. 41.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: International Joint Conference on Artificial Intelligence, pp. 386–392 (2007)Google Scholar
  42. 42.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium Multi-valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Robert Wille
    • 1
    • 2
  • Nils Quetschlich
    • 3
  • Yuma Inoue
    • 4
  • Norihito Yasuda
    • 4
  • Shin-ichi Minato
    • 4
  1. 1.Institute for Integrated CircuitsJohannes Kepler University LinzLinzAustria
  2. 2.Cyber-Physical SystemsDFKI GmbHBremenGermany
  3. 3.University of BremenBremenGermany
  4. 4.Hokkaido UniversitySapporoJapan

Personalised recommendations