kProbLog: An Algebraic Prolog for Kernel Programming

  • Francesco Orsini
  • Paolo Frasconi
  • Luc De Raedt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9575)


kProbLog is a simple algebraic extension of Prolog with facts and rules annotated with semiring labels. We propose kProbLog as a language for learning with kernels. kProbLog allows to elegantly specify systems of algebraic expressions on databases. We propose some code examples of gradually increasing complexity, we give a declarative specification of some matrix operations and an algorithm to solve linear systems. Finally we show the encodings of state-of-the-art graph kernels such as Weisfeiler-Lehman graph kernels, propagation kernels and an instance of Graph Invariant Kernels (GIKs), a recent framework for graph kernels with continuous attributes. The number of feature extraction schemas, that we can compactly specify in kProbLog, shows its potential for machine learning applications.


Graph kernels Prolog Machine learning 


  1. 1.
    De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its application in link discovery. In: IJCAI (2007)Google Scholar
  2. 2.
    Eisner, J., Filardo, N.W.: Dyna: extending datalog for modern AI. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog 2010. LNCS, vol. 6702, pp. 181–220. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Esparza, J., Luttenberger, M.: Solving fixed-point equations by derivation tree analysis. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 19–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Esparza, J., Kiefer, S., Luttenberger, M.: An extension of newton’s method to \(\omega \)-continuous semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 157–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Esparza, J., Luttenberger, M., Schlund, M.: FPsolve: a generic solver for fixpoint equations over semirings. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 1–15. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Frasconi, P., Costa, F., De Raedt, L., De Grave, K.: kLog: A language for logical and relational learning with kernels. In: Artificial Intelligence (2014)Google Scholar
  7. 7.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems. ACM (2007)Google Scholar
  8. 8.
    Kim, M., Candan, K.S.: Approximate tensor decomposition within a tensor-relational algebraic framework. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM (2011)Google Scholar
  9. 9.
    Kimmig, A., Van den Broeck, G., De Raedt, L.: An algebraic prolog for reasoning about possible worlds. In: 25th AAAI Conference on Artificial Intelligence (2011)Google Scholar
  10. 10.
    Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: Learning simple relational kernels. In: AAAI (2006)Google Scholar
  11. 11.
    Lehmann, D.J.: Algebraic structures for transitive closure. In: Theoretical Computer Science (1977)Google Scholar
  12. 12.
    Neumann, M., Patricia, N., Garnett, R., Kersting, K.: Efficient graph kernels by randomization. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 378–393. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Orsini, F., Frasconi, P., De Raedt, L.: Graph invariant kernels. In: Proceedings of the 24th IJCAI (2015)Google Scholar
  14. 14.
    Ross Quinlan, J.: Learning logical definitions from relations. Mach. Learn. 5(3), 239–266 (1990)Google Scholar
  15. 15.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning (2006)Google Scholar
  16. 16.
    Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: IJCAI (1997)Google Scholar
  17. 17.
    Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: Anytime inference in probabilistic logic programs with tp-compilation. In: Proceedings of the 24th IJCAI (2015)Google Scholar
  19. 19.
    Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 97–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francesco Orsini
    • 1
    • 2
  • Paolo Frasconi
    • 2
  • Luc De Raedt
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Department of Information EngineeringUniversitá degli Studi di FirenzeFirenzeItaly

Personalised recommendations