Advertisement

Leveraging Analytics for Digital Transformation of Enterprise Services and Architectures

  • Alfred ZimmermannEmail author
  • Rainer Schmidt
  • Kurt Sandkuhl
  • Eman El-Sheikh
  • Dierk Jugel
  • Christian Schweda
  • Michael Möhring
  • Matthias Wißotzki
  • Birger Lantow
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 111)

Abstract

The digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. The digitization of software-intensive products and services is enabled basically by four megatrends: Cloud Computing, Big Data Mobile Systems, and Social Technologies. This disruptive change interacts with all information processes and systems that are important business enablers for the current digital transformation. The Internet of Things, Social Collaboration Systems for Adaptive Case Management, Mobility Systems and Services for Big Data in Cloud Services environments are emerging to support intelligent user-centered and social community systems. Modern enterprises see themselves confronted with an ever growing design space to engineer business models of the future as well as their IT support, respectively. The decision analytics in this field becomes increasingly complex and decision support, particularly for the development and evolution of sustainable enterprise architectures (EA), is duly needed. With the advent of intelligent user-centered and social community systems, the challenging decision processes can be supported in more flexible and intuitive ways. Tapping into these systems and techniques, the engineers and managers of the enterprise architecture become part of a viable enterprise, i.e. a resilient and continuously evolving system that develops innovative business models.

Keywords

Cloud Computing Description Logic Enterprise Architecture Digitize Product Architectural Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aier, S., et al.: Towards a more integrated EA planning: linking transformation planning with evolutionary change. In: Proceedings of EMISA 2011, pp. 23–36, Hamburg, Germany (2011)Google Scholar
  2. 2.
    Schmidt, R., et al.: Digitization—A multi-perspective definition. In: Proceedings of IDEA 2015, ESOCC Taormina, Italy. Springer, Berlin (2015)Google Scholar
  3. 3.
    Leimeister, J.M., et al.: Research program “Digital Business Transformation HSG”. In: Working Paper Services of University of St. Gallen—Institute of Information Management, No. 1, St. Gallen, Switzerland (2014)Google Scholar
  4. 4.
    Ross, J.W., et al.: Enterprise Architecture as Strategy—Creating a Foundation for Business Execution. Harvard Business School Press (2006)Google Scholar
  5. 5.
    Weill, P., Ross, J.W.: It Governance: How Top Performers Manage It Decision Rights for Superior Results. Harvard Business School Press (2004)Google Scholar
  6. 6.
    Lankhorst, M., et al.: Enterprise Architecture at Work: Modeling, Communication and Analysis. Springer, Berlin (2013)CrossRefGoogle Scholar
  7. 7.
    Johnson, P., et al.: IT Management with Enterprise Architecture. KTH, Stockholm (2014)Google Scholar
  8. 8.
    Bente, S., et al.: Collaborative Enterprise Architecture. Morgan Kaufmann, Los Altos (2012)Google Scholar
  9. 9.
    Zhang, L.J., et al.: Services Computing. Springer, Berlin (2007)Google Scholar
  10. 10.
    Papazoglou, M.P.: Web Services & SOA. Pearson (2012)Google Scholar
  11. 11.
    Zimmermann, A., et al.: Evolving enterprise architectures for digital transformations. In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 183–194, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)Google Scholar
  12. 12.
    Zimmermann, A., et al.: Digital Enterprise Architecture—Transformation for the Internet of Things. EDOCW 2015 with SoEA4EE, 21–25 Sept 2015, Adelaide, Australia (2015)Google Scholar
  13. 13.
    Tapscott, D.: The Digital Economy: Promise and Peril in the Age of Networked Intelligence, vol. 1. McGraw-Hill, New York (1996)Google Scholar
  14. 14.
    Brynjolfsson, E.: Understanding the Digital Economy: Data, Tools, and Research. The MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Weill, P., Woerner, S.: Thriving in an increasingly digital ecosystem. MIT Sloan Management Review, June 2015Google Scholar
  16. 16.
    Westerman, G., Bonnet, D.: Revamping your business through digital transformation. MIT Sloan Management Review, Feb 2015Google Scholar
  17. 17.
    Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST (2011)Google Scholar
  18. 18.
    Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 530–533 (2011)Google Scholar
  19. 19.
    Evans, P.C., Annunziata, M.: Industrial Internet: Pushing the Boundaries of Minds and Machines, General Electric, p. 21 (2012)Google Scholar
  20. 20.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw 61, 85–117 (2015)CrossRefGoogle Scholar
  22. 22.
    Brynjolfsson, E., McAfee, A.: The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company (2014)Google Scholar
  23. 23.
    Duffuaa, S.O., Raouf, A.: Preventive maintenance, concepts, modeling, and analysis. In: Planning and Control of Maintenance Systems. Springer International Publishing, pp. 57–94 (2015)Google Scholar
  24. 24.
    Uckelmann, D., et al.: Architecting the Internet of Things. Springer, Berlin (2011)Google Scholar
  25. 25.
    Schmidt, R., et al.: Industry 4.0—Potentials for Creating Smart Products: Empirical Research results. In Abramowicz, W. (ed.) 18th International Conference on Business Information Systems, LNBIP 2008. Springer, Berlin, pp. 16–27 (2015)Google Scholar
  26. 26.
    Weitzel, T., et al.: Reconsidering network effect theory. ECIS 2000 Proceedings, Paper 91 (2000)Google Scholar
  27. 27.
    Metcalfe, B.: Invention is a flower, innovation is a weed. Tech. Rev. 102(6), 54–57 (1999)Google Scholar
  28. 28.
    Provost, F., Fawcett, T.: Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinking, 1 edn. O’Reilly Media, Sebastopol (2013)Google Scholar
  29. 29.
    Vargo, S.L., Lusch, R.F.: The four service marketing myths: remnants of a goods-based manufacturing model. J. Serv. Res. 6(4), 324–335 (2004)CrossRefGoogle Scholar
  30. 30.
    Vargo, S., Lusch, R.: Service-dominant logic: continuing the evolution. J. Acad. Mark. Sci. 36(1), 1–10 (2008)CrossRefGoogle Scholar
  31. 31.
    Ritzer, G., Jurgenson, N.: Production, consumption, prosumption the nature of capitalism in the age of the digital ‘prosumer’. J. Consum. Culture 10(1), 13–36 (2010)CrossRefGoogle Scholar
  32. 32.
    Baldwin, C.Y., Woodard, C.J.: The architecture of platforms: a unified view. In: Platforms, Markets and Innovation, pp. 19–44 (2009)Google Scholar
  33. 33.
    Eisenmann, T.R.: Managing proprietary and shared platforms. Calif. Manag. Rev. 50(4), 31–53 (2008)CrossRefGoogle Scholar
  34. 34.
    Iacob, M.-E., et al.: Delivering Business Outcome with TOGAF® and ArchiMate®. eBook BiZZdesign (2015)Google Scholar
  35. 35.
    The Open Group: TOGAF Version 9.1. Van Haren Publishing (2011)Google Scholar
  36. 36.
    The Open Group: ArchiMate 2.0 Specification. Van Haren Publishing (2012)Google Scholar
  37. 37.
    ISO/IEC/IEEE: Systems and Software Engineering—Architecture Description. Technical Standard (2011)Google Scholar
  38. 38.
    Emery, D., Hilliard, R.: Every Architecture Description needs a Framework: Expressing Architecture Frameworks Using ISO/IEC 42010. IEEE/IFIP WICSA/ECSA 2009, pp. 31–39 (2009)Google Scholar
  39. 39.
    Jonkers, H., et al.: Enterprise architecture: management tool and blueprint for the organization. Inf. Syst. Front. 8(2), 63–66 (2006)CrossRefGoogle Scholar
  40. 40.
    Schmidt, R., et al.: Benefits of enterprise architecture management—Insights from European experts. In: Proceedings of PoEM 2015, Valencia. Springer, Berlin (2015)Google Scholar
  41. 41.
    Zimmermann, A., et al.: Capability diagnostics of enterprise service architectures using a dedicated software architecture reference model. In: IEEE International Conference on Services Computing (SCC), pp. 592–599, Washington DC, USA, 2011Google Scholar
  42. 42.
    Zimmermann, A., et al.: Towards Service-oriented Enterprise Architectures for Big Data Applications in the Cloud. EDOC 2013 with SoEA4EE, pp. 130–135, 9–13 Sept 2013, Vancouver, BC, Canada (2013)Google Scholar
  43. 43.
    Zimmermann, A., et al.: Adaptable enterprise architectures for software evolution of SmartLife ecosystems. In: Proceedings of the 18th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW 2014), pp. 316–323, Ulm, Germany (2014)Google Scholar
  44. 44.
    Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management will Revolutionize the Way that Knowledge Workers Get Things Done. Meghan-Kiffer Press (2010)Google Scholar
  45. 45.
    Swenson, K.D.: State of the Art In Case Management. White Paper Fujitsu (2013)Google Scholar
  46. 46.
    Collenbusch, D., et al.: Experiencing adaptive case management capabilities with cognoscenti. In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 233–243, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)Google Scholar
  47. 47.
    Zimmermann, A., et al.: Towards an integrated service-oriented reference enterprise architecture. In: ESEC/WEA 2013 on Software Ecosystem Architectures, pp. 26–30, St. Petersburg, Russia (2013)Google Scholar
  48. 48.
    Buckl, S., et al.: Modeling the supply and demand of architectural information on enterprise level. In: 15th IEEE International EDOC Conference 2011, pp. 44–51, Helsinki, Finland (2011)Google Scholar
  49. 49.
    Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy. Morgan Kaufmann, Los Altos (2013)Google Scholar
  50. 50.
    Heistacher, T., et al.: Pervasive Service Architecture for a Digital Business Ecosystem. arXiv preprint cs/0408047 (2004)Google Scholar
  51. 51.
    Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan & Claypool Publishers (2011)Google Scholar
  52. 52.
    Keen, P.G.W.: Decision support systems: the next decade. In: Decision Support Systems, vol. 3(3), pp. 253–265. Elsevier, Amsterdam (1987)Google Scholar
  53. 53.
    Keen, P.G.W., Morton, M.S.S.: Decision Support Systems: An Organizational Perspective. Addison-Wesley, Reading (1978)Google Scholar
  54. 54.
    Jugel, D., Schweda, C.M.: Interactive functions of a Cockpit for Enterprise Architecture Planning. In: International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW 2014), pp. 33–40, Ulm, Germany (2014)Google Scholar
  55. 55.
    Wißotzki, M., Köpp, C., Stelzer, P.: Rollenkonzepte im Enterprise Architecture Management. In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 127–138, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)Google Scholar
  56. 56.
    Jugel, D., Kehrer, S., Schweda, C. M.: Providing EA decision support for stakeholders by automated analysis. In: Zimmermann, A., Rossmann, A. (eds.) Lecture Notes in Informatics, vol. P-244, pp. 151–162, DEC 15, 25–26 June 2015, Böblingen, Germany (2015)Google Scholar
  57. 57.
    Hauder, M., Pigat, S., Matthes, F.: Research challenges in adaptive case management: a literature review. In: International Enterprise Distributed Object Conference Workshops and Demonstrations (EDOCW 2014), pp. 98–107, Ulm, Germany (2014)Google Scholar
  58. 58.
    Fischer, L.: Taming the Unpredictable Real World Adaptive Case Management: Case Studies and Practical Guidance, Future Strategies (2011)Google Scholar
  59. 59.
    Fischer, L.: Empowering Knowledge Workers, Future Strategies (2014)Google Scholar
  60. 60.
    Object Management Group: Case Management Modeling Notation 1.0 (2014)Google Scholar
  61. 61.
    Jugel, D., Kehrer, S., Schweda, C.M., Zimmermann, A.: A decision-making case for collaborative enterprise architecture engineering. In: Cunningham, D., Hofstedt, P., Meer, K., Schmitt, I. (eds.) Informatik 2015, Lecture Notes in Informatics (LNI). Koellen Verlag (2015)Google Scholar
  62. 62.
    Mayring, P.: Qualitative Inhaltsanalyse, 11th edn, Beltz (2010)Google Scholar
  63. 63.
    Johnson, P., Ekstedt, M.: Enterprise Architecture—Models and Analyses for Information Systems Decision Making, Studentlitteratur (2007)Google Scholar
  64. 64.
    Buckl, S., Matthes, F., Schweda, C.M.: Classifying enterprise architecture analysis approaches. In: The 2nd IFIP WG5.8 Workshop on Enterprise Interoperability (IWEI’2009), pp. 66–79, Valencia, Spain (2009)Google Scholar
  65. 65.
    Hanschke, I.: Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden für das Enterprise Architecture Management, 3rd edn. Hanser Verlag, München (2013)CrossRefGoogle Scholar
  66. 66.
    Matthes, F.: EAM KPI Catalog v.1.0, Technical Report, Technical University Munich, Chair for Informatics 19, München, Germany (2011)Google Scholar
  67. 67.
    Hauder, M., Münch, D., Michel, F., Utz, A., Matthes, F.: Examining adaptive case management to support processes for enterprise architecture management. In: International Enterprise Distributed Object Conference Workshops and Demonstrations (EDOCW), pp. 23–32, Ulm, Germany (2014)Google Scholar
  68. 68.
    Object Management Group: Decision Model and Notation 1.0—Beta 1 (2014)Google Scholar
  69. 69.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Berlin (2007)Google Scholar
  70. 70.
    Taylor, F.W.: The Principles of Scientific Management, vol. 202, New York (1911)Google Scholar
  71. 71.
    Bruno, G.: Requirements elicitation as a case of social process: an approach to its description. In: Business Process Management Workshops, pp. 243–254 (2010)Google Scholar
  72. 72.
    Bruno, G., Dengler, F., Jennings, B., Khalaf, R., Nurcan, S., Prilla, M., Sarini, M., Schmidt, R., Silva, R.: Key challenges for enabling agile BPM with social software. J. Softw. Maint. Evol. Res. Pract. 23(4), 297–326, June 2011Google Scholar
  73. 73.
    Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press (2006)Google Scholar
  74. 74.
    Granovetter, M.: The Strength of Weak Ties. Am. J. Sociol. 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  75. 75.
    Tapscott, D., Williams, A.: Wikinomics: How Mass Collaboration Changes Everything (2006)Google Scholar
  76. 76.
    Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: a service systems and service logic perspective. Eur. Manag. J. 26(3), 145–152 (2008)CrossRefGoogle Scholar
  77. 77.
    Schmidt, R., Zimmermann, A., Möhring, M., Jugel, D., Bär, F., Schweda, C. M.: Social-software-based support for enterprise architecture management processes. In: Business Process Management Workshops, pp. 452–462. Springer, Berlin (2014)Google Scholar
  78. 78.
    Surowiecki, J.: The Wisdom of the Clouds. Anchor (2005)Google Scholar
  79. 79.
    Plataniotis, G., De Kinderen, S., Proper, H.A.: EA anamnesis: an approach for decision making analysis in enterprise architecture. Int. J. Inf. Syst. Model. Des. 4(1), 75–95 (2014)CrossRefGoogle Scholar
  80. 80.
    Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. Knowl. Eng. Rev. 13(01), 31–89 (1998)CrossRefGoogle Scholar
  81. 81.
    Kang, D., Lee, J., Choi, S., Kim, K.: An ontology-based enterprise architecture. Expert Syst. Appl. 37(2), 1456–1464 (2010)CrossRefGoogle Scholar
  82. 82.
    Wagner, G.: Ontologies and rules for enterprise modeling and simulation. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 385–394, Aug 2011Google Scholar
  83. 83.
    Azevedo, C.L., Almeida, J.P.A., van Sinderen, M., Quartel, D., Guizzardi, G.: An ontology-based semantics for the motivation extension to archimate. In: 2011 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 25–34 (2011)Google Scholar
  84. 84.
    Sandkuhl, K., Smirnov, A., Shilov, N., Koç, H.: Ontology-driven enterprise modeling in practice: experiences from industrial cases. In: Advanced Information Systems Engineering Workshops, pp. 209–220. Springer International Publishing (2015)Google Scholar
  85. 85.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  86. 86.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(02), 93–136 (1996)CrossRefGoogle Scholar
  87. 87.
    Bürger, T., & Simperl, E.: Measuring the benefits of ontologies. In: On the Move to Meaningful Internet Systems: OTM 2008 Workshops, pp. 584–594. Springer, Berlin (2008)Google Scholar
  88. 88.
    Antunes, G., Bakhshandeh, M., Mayer, R., Borbinha, J., Caetano, A.: Using ontologies for enterprise architecture analysis. In: 2013 17th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW), pp. 361–368 (2013)Google Scholar
  89. 89.
    Antunes, C., Caetano, A., Borbinha, J.: Enterprise architecture model analysis using description logics. In: 2014 IEEE 18th International Enterprise Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), pp. 237–244 (2014)Google Scholar
  90. 90.
    Noy, N., McGuinness, D.L.: Ontology Development, vol. 101. Knowledge Systems Laboratory, Stanford University (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alfred Zimmermann
    • 1
    Email author
  • Rainer Schmidt
    • 2
  • Kurt Sandkuhl
    • 3
  • Eman El-Sheikh
    • 4
  • Dierk Jugel
    • 1
    • 3
  • Christian Schweda
    • 1
  • Michael Möhring
    • 5
  • Matthias Wißotzki
    • 3
  • Birger Lantow
    • 3
  1. 1.Reutlingen UniversityReutlingenGermany
  2. 2.Munich UniversityMunichGermany
  3. 3.University of RostockRostockGermany
  4. 4.Center for CybersecurityUniversity of West FloridaPensacolaUSA
  5. 5.Munich UniversityMunichGermany

Personalised recommendations