An Algorithm for the Critical Pair Analysis of Amalgamated Graph Transformations

  • Kristopher Born
  • Gabriele Taentzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9761)


Graph transformation has been shown to be well suited as formal foundation for model transformations. While simple model changes may be specified by simple transformation rules, this is usually not sufficient for more complex changes. In these situations, the concept of amalgamated transformation has been increasingly often used to model for each loops of rule applications which coincide in common core actions. Such a loop can be specified by a kernel rule and a set of extending multi-rules forming an interaction scheme.

The Critical Pair Analysis (CPA) can be used to show local confluence of graph transformation systems. Each critical pair reports on a potential conflict between two rules. It has been shown recently that the generally infinite set of critical pairs for interaction schemes can be reduced to a finite set of non-redundant pairs being sufficient to show local confluence of the transformation system. Building on this basic result, we present an algorithm that is able to compute all non-redundant critical pairs for two given interaction schemes. The algorithm is implemented for Henshin, a model transformation environment based on graph transformation concepts.


Model Transformation Transformation System Graph Transformation Partial Match Critical Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    The Fujaba tool suite.
  2. 2.
    Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the eclipse modeling framework. Autom. Softw. Eng. 20(2), 141–184 (2013)CrossRefGoogle Scholar
  4. 4.
    Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel independence of amalgamated graph transformations applied to model transformation. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–250 (2012). CrossRefGoogle Scholar
  6. 6.
    Born, K., Arendt, T., Heß, F., Taentzer, G.: Analyzing conflicts and dependencies of rule-based transformations in Henshin. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 165–168. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and their languages. Theor. Comput. Sci. 411(34–36), 3090–3109 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer, New York (2006)zbMATHGoogle Scholar
  9. 9.
    Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application conditions in \({\cal M}\)-adhesive categories. Math. Struct. Comput. Sci. 24(4) (2014)Google Scholar
  10. 10.
    Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements in a use case-driven approach: a static analysis technique based on graph transformation. In: Proceedings of the 22rd International Conference on Software Engineering, ICSE 2002, Orlando, Florida, USA, 19–25 May, pp. 105–115. ACM (2002)Google Scholar
  12. 12.
    More details on the results.
  13. 13.
    Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model versioning. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA, 11–15 November, pp. 191–201. IEEE (2013)Google Scholar
  14. 14.
    Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the small with the epsilon wizard language. J. Object Technol. 6(9), 53–69 (2007). CrossRefGoogle Scholar
  15. 15.
    Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their instance models: a formal approach based on graph transformation. Sci. Comput. Program. 104, 2–43 (2015)CrossRefGoogle Scholar
  16. 16.
    Mehner-Heindl, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented models using graph transformation systems. In: Moreira, A., Chitchyan, R., Araújo, J., Rashid, A. (eds.) Aspect-Oriented Requirements Engineering, pp. 243–270. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph transformation. Softw. Syst. Model. 6(3), 269–285 (2007)CrossRefGoogle Scholar
  18. 18.
    Plump, D.: Critical pairs in term graph rewriting. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Plump, D.: On termination of graph rewriting. In: Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 88–100. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: language and environment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2, pp. 487–550. World Scientific (1999)Google Scholar
  21. 21.
    Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling Framework, 2nd edn. Pearson Eduction, London (2009)Google Scholar
  22. 22.
    Taentzer, G., Golas, U.: Towards local confluence analysis for amalgamated graph transformation. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 69–86. Springer, Heidelberg (2015). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Philipps-Universität MarburgMarburgGermany

Personalised recommendations