Parallelism in AGREE Transformations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9761)

Abstract

The AGREE approach to graph transformation allows to specify rules that clone items of the host graph, controlling in a fine-grained way how to deal with the edges that are incident, but not matched, to the rewritten part of the graph. Here, we investigate in which ways cloning (with controlled embedding) may affect the dependencies between two rules applied to the same graph. We extend to AGREE the classical notion of parallel independence between the matches of two rules to the same graph, identifying sufficient conditions that guarantee that two rules can be applied in any order leading to the same result.

References

  1. 1.
    Bonchi, F., Gadducci, F., Heindel, T.: Parallel and sequential independence for borrowed contexts. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 226–241. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor. Comput. Sci. 294(1–2), 61–102 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE – algebraic graph rewriting with controlled embedding. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 35–51. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part I: basic concepts and double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997)Google Scholar
  6. 6.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  7. 7.
    Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout rewriting. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 161–176. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations. Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  9. 9.
    Ehrig, H.: Introduction to the algebraic theory of graph grammars (a survey). In: Claus, V., Ehrig, H., Rozenberg, G. (eds.) Graph-Grammars and Their Application to Computer Science and Biology. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transformation and HLR systems based on the DPO approach. Bulletin of the EATCS 102, 111–121 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules with nested application conditions. Electronic Communications of the EASST 26, 1–23 (2010)Google Scholar
  12. 12.
    Ehrig, H., Löwe, M.: Parallel and distributed derivations in the single-pushout approach. Theor. Comput. Sci. 109(1&2), 123–143 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hermann, F., Corradini, A., Ehrig, H.: Analysis of permutation equivalence M-adhesive transformation systems with negative application conditions. Math. Struct. Comput. Sci. 24(4), 1–47 (2014)MathSciNetGoogle Scholar
  14. 14.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chemical graph transformation. Electr. Notes Theor. Comput. Sci. 127(1), 157–166 (2005)CrossRefGoogle Scholar
  16. 16.
    Taentzer, G., et al.: Generation of Sierpinski triangles: a case study for graph transformation tools. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 514–539. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.LJK - Université Grenoble Alpes and CNRSGrenobleFrance
  3. 3.LIG - Université Grenoble Alpes and CNRSGrenobleFrance
  4. 4.INF - Universidade Federal Do Rio Grande Do SulPorto AlegreBrazil

Personalised recommendations