Advertisement

Role of n-3 (Omega-3) Polyunsaturated Fatty Acids in Postpartum Depression: Mechanisms and Implications for Prevention and Treatment

  • Beth LevantEmail author
Chapter

Abstract

The pathogenesis of postpartum depression remains to be fully elucidated but likely results from the interactions of genetic factors, environmental influences, and the physiological demands of pregnancy, childbirth, and lactation. Epidemiological evidence and clinical findings suggest that low dietary and/or tissue levels of n-3 (omega-3) polyunsaturated fatty acids (PUFA) may be a factor contributing to the etiologies of both major depression and postpartum depression. Animal studies indicate that reproducing females are at particular risk of losing the n-3 PUFA DHA from tissues including the brain. A decrease in brain DHA content causes a number of neurobiological effects that also occur in major depression disorder. This evidence, which supports the involvement of decreased brain n-3 PUFAs in the etiology of postpartum depression and other depressive disorders, and their implications for the prevention and treatment of these disorders, are discussed.

Keywords

Depression Docosahexaenoic acid Omega-3 Polyunsaturated fatty acid Postpartum 

References

  1. 1.
    Wisner KL, Parry BL, Piontek CM. Postpartum depression. N Engl J Med. 2002;347:194–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Brockington I. Postpartum psychiatric disorders. Lancet. 2004;363:303–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Gavin NI, Gaynes BN, Lohr KN, Meltzer-Brody S, Gartlehner G, Swinson T. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol. 2005;106:1071–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Leung BM, Kaplan BJ. Perinatal depression: prevalence, risks, and the nutrition link–a review of the literature. J Am Diet Assoc. 2009;109:1566–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Stowe ZN, Nemeroff CB. Women at risk for postpartum-onset major depression. Am J Obstet Gynecol. 1995;173:639–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Gale S, Harlow BL. Postpartum mood disorders: a review of clinical and epidemiological factors. J Psychosom Obstet Gynaecol. 2003;24:257–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Bloch M, Daly RC, Rubinow DR. Endocrine factors in the etiology of postpartum depression. Compr Psychiatry. 2003;44:234–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Beck CT. Predictors of postpartum depression: an update. Nurs Res. 2001;50:275–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Tammentie T, Tarkka MT, Astedt Kurki P, Paavilainen E. Sociodemographic factors of families related to postnatal depressive symptoms of mothers. Int J Nurs Pract. 2002;8:240–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Berle JO, Aarre TF, Mykletun A, Dahl AA, Holsten F. Screening for postnatal depression. Validation of the Norwegian version of the Edinburgh postnatal depression scale, and assessment of risk factors for postnatal depression. J Affect Disord. 2003;76:151–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Pfuhlmann B, Stoeber G, Beckmann H. Postpartum psychoses: prognosis, risk factors, and treatment. Curr Psychiatry Rep. 2002;4:185–90.PubMedCrossRefGoogle Scholar
  12. 12.
    McCoy SJ, Beal JM, Shipman SB, Payton ME, Watson GH. Risk factors for postpartum depression: a retrospective investigation at 4-weeks postnatal and a review of the literature. J Am Osteopath Assoc. 2006;106:193–8.PubMedGoogle Scholar
  13. 13.
    Robertson E, Grace S, Wallington T, Stewart DE. Antenatal risk factors for postpartum depression: a synthesis of recent literature. Gen Hosp Psychiatry. 2004;26:289–95.PubMedCrossRefGoogle Scholar
  14. 14.
    Gurel S, Gurel H. The evaluation of determinants of early postpartum low mood: the importance of parity and inter-pregnancy interval. Eur J Obstet Gynecol Reprod Biol. 2000;91:21–4.PubMedCrossRefGoogle Scholar
  15. 15.
    McCoy SJ, Beal JM, Watson GH. Endocrine factors and postpartum depression. A selected review. J Reprod Med. 2003;48:402–8.PubMedGoogle Scholar
  16. 16.
    Zonana J, Gorman JM. The neurobiology of postpartum depression. CNS Spectr. 2005;10:792–9, 805.Google Scholar
  17. 17.
    Skalkidou A, Hellgren C, Comasco E, Sylven S, Sundstrom-Poromaa I. Biological aspects of postpartum depression. Womens Health (Lond Engl). 2012;8:659–72.Google Scholar
  18. 18.
    Glynn LM, Davis EP, Sandman CA. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides. 2013;47:363–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Kendall-Tackett K. A new paradigm for depression in new mothers: the central role of inflammation and how breastfeeding and anti-inflammatory treatments protect maternal mental health. Int Breastfeed J. 2007;2:6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Osborne LM, Monk C. Perinatal depression–the fourth inflammatory morbidity of pregnancy? Theory and literature review. Psychoneuroendocrinology. 2013;38:1929–52.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Doornbos B, Dijck-Brouwer DA, Kema IP, Tanke MA, van Goor SA, Muskiet FA, et al. The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5-HTT and COMT. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1250–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Sinclair AJ. Long chain polyunsaturated fatty acids in the mammalian brain. Proc Nutr Soc. 1975;34:287–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Salem N Jr, Litman B, Kim H-Y, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36:945–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45:559–79.PubMedCrossRefGoogle Scholar
  25. 25.
    de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 2000;290:2140–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Clarke SD, Thuillier P, Baillie RA, Sha X. Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors. Am J Clin Nutr. 1999;70:566–71.PubMedGoogle Scholar
  27. 27.
    Cermenati G, Brioschi E, Abbiati F, Melcangi RC, Caruso D, Mitro N. Liver X receptors, nervous system, and lipid metabolism. J Endocrinol Invest. 2013;36:435–43.PubMedGoogle Scholar
  28. 28.
    Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2014.Google Scholar
  29. 29.
    Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum Dev. 1980;4:131–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev. 1980;4:121–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Green P, Yavin E. Fatty acid composition of late embryonic and early postnatal rat brain. Lipids. 1996;31:859–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Innis SM. Human milk and formula fatty acids. J Pediatrics. 1992;120:S56–61.CrossRefGoogle Scholar
  33. 33.
    Innis SM. Polyunsaturated fatty acids in human milk: an essential role in infant development. Adv Exp Med Biol. 2004;554:27–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Galli C, Trzeciak HI, Paoletti R. Effects of dietary fatty acids on the fatty acid composition of brain ethanolamine phosphoglyceride: reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids. Biochim Biophys Acta. 1971;248:449–54.CrossRefGoogle Scholar
  35. 35.
    Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr. 2014;99:734S–41S.PubMedCrossRefGoogle Scholar
  36. 36.
    Scholtz SA, Colombo J, Carlson SE. Clinical overview of effects of dietary long-chain polyunsaturated fatty acids during the perinatal period. Nestle Nutr Inst Workshop Ser. 2013;77:145–54.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Makrides M, Smithers LG, Gibson RA. Role of long-chain polyunsaturated fatty acids in neurodevelopment and growth. Nestle Nutr Workshop Ser Pediatr Program. 2010;65:123–33 (discussion 33-6).Google Scholar
  38. 38.
    Bourre JM, Dumont OS, Piciotti MJ, Pascal GA, Durand GA. Dietary alpha-linolenic acid deficiency in adult rats for 7 months does not alter brain docosahexaenoic acid content, in contrast to liver, heart and testes. Biochim Biophys Acta. 1992;1124:119–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Levant B, Ozias MK, Carlson SE. Diet (n-3) polyunsaturated fatty acid content and parity interact to alter maternal rat brain phospholipid fatty acid composition. J Nutr. 2006;136:2236–42.PubMedGoogle Scholar
  40. 40.
    McNamara RK, Sullivan J, Richtand NM, Jandacek R, Rider T, Tso P, et al. Omega-3 fatty acid deficiency augments amphetamine-induced behavioral sensitization in adult DBA/2J mice: Relationship with ventral striatum dopamine concentrations. Synapse. 2008;62:725–35.PubMedCrossRefGoogle Scholar
  41. 41.
    Luke B. Nutrition and multiple gestation. Semin Perinatol. 2005;29:349–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Beaton GH. Some physiological adjustments relating to nutrition in pregnancy. Can Med Assoc J. 1966;95:622–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Birch EE, Garfield S, Hoffman DR, Uauy R, Birch DG. A randomized controlled trial of early dietary supply of long-chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol. 2000;42:174–81.PubMedCrossRefGoogle Scholar
  44. 44.
    Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids. 1998;33:973–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Otto SJ, Houwelingen AC, Antal M, Manninen A, Godfrey K, Lopez-Jaramillo P, et al. Maternal and neonatal essential fatty acid status in phospholipids: an international comparative study. Eur J Clin Nutr. 1997;51:232–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Holman RT, Johnson SB, Ogburn PL. Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci USA. 1991;88:4835–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Al MD, van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74:55–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Al MD, van Houwelingen AC, Hornstra G. Relation between birth order and the maternal and neonatal docosahexaenoic acid status. Eur J Clin Nutr. 1997;51:548–53.PubMedCrossRefGoogle Scholar
  49. 49.
    van den Ham EC, van Houwelingen AC, Hornstra G. Evaluation of the relation between n-3 and n-6 fatty acid status and parity in nonpregnant women from the Netherlands. Am J Clin Nutr. 2001;73:622–7.PubMedGoogle Scholar
  50. 50.
    Hornstra G, Al MD, van Houwelingen AC, Foreman-van Drongelen MMHP. Essential fatty acids in pregnancy and early human development. Eur J Obstet Gynecol Reprod Biol. 1995;61:57–62.Google Scholar
  51. 51.
    Levant B, Ozias MK, Carlson SE. Diet (n-3) polyunsaturated fatty acid content and parity affect liver and erythrocyte phospholipid fatty acid composition in female rats. J Nutr. 2007;137:2425–30.PubMedGoogle Scholar
  52. 52.
    Levant B, Ozias MK, Carlson SE. Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J Nutr. 2007;137:130–4.PubMedGoogle Scholar
  53. 53.
    Levant B. N-3 (omega-3) Fatty acids in postpartum depression: implications for prevention and treatment. Depress Res Treat. 2011;2011:467349.PubMedGoogle Scholar
  54. 54.
    Hibbeln JR. Fish consumption and major depression. Lancet. 1998;351:1213.PubMedCrossRefGoogle Scholar
  55. 55.
    Tanskanen A, Hibbeln JR, Tuomilehto J, Uutela A, Haukkala A, Viinamaki H, et al. Fish consumption and depressive symptoms in the general population in Finland. Psychiatry Serv. 2001;52:529–31.CrossRefGoogle Scholar
  56. 56.
    Appleton KM, Woodside JV, Yarnell JW, Arveiler D, Haas B, Amouyel P, et al. Depressed mood and dietary fish intake: direct relationship or indirect relationship as a result of diet and lifestyle? J Affect Disord. 2007;104:217–23.PubMedCrossRefGoogle Scholar
  57. 57.
    van de Rest O, de Goede J, Sytsma F, Oude Griep LM, Geleijnse JM, Kromhout D, et al. Association of n-3 long-chain PUFA and fish intake with depressive symptoms and low dispositional optimism in older subjects with a history of myocardial infarction. Br J Nutr. 2010;103:1381–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Suominen-Taipale AL, Partonen T, Turunen AW, Mannisto S, Jula A, Verkasalo PK. Fish consumption and omega-3 polyunsaturated Fatty acids in relation to depressive episodes: a cross-sectional analysis. PLoS ONE. 2010;5:e10530.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hoffmire CA, Block RC, Thevenet-Morrison K, van Wijngaarden E. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: an analysis of the 2005–2008 National Health and Nutrition Examination Survey. Prostaglandins Leukot Essent Fatty Acids. 2012;86:155–60.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jacka FN, Pasco JA, Williams LJ, Meyer BJ, Digger R, Berk M. Dietary intake of fish and PUFA, and clinical depressive and anxiety disorders in women. Br J Nutr. 2013;109:2059–66.PubMedCrossRefGoogle Scholar
  61. 61.
    Murakami K, Miyake Y, Sasaki S, Tanaka K, Arakawa M. Fish and n-3 polyunsaturated fatty acid intake and depressive symptoms: Ryukyus child health study. Pediatrics. 2010;126:e623–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Oddy WH, Hickling S, Smith MA, O’Sullivan TA, Robinson M, de Klerk NH, et al. Dietary intake of omega-3 fatty acids and risk of depressive symptoms in adolescents. Depress Anxiety. 2011;28:582–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Edwards R, Peet M, Shay J, Horrobin D. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord. 1998;48:149–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY. Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatry Res. 1999;85:275–91.PubMedCrossRefGoogle Scholar
  65. 65.
    Peet M, Murphy B, Shay J, Horrobin D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry. 1998;43:315–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Schiepers OJ, de Groot RH, Jolles J, van Boxtel MP. Plasma phospholipid fatty acid status and depressive symptoms: association only present in the clinical range. J Affect Disord. 2009;118:209–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Mamalakis G, Kalogeropoulos N, Andrikopoulos N, Hatzis C, Kromhout D, Moschandreas J, et al. Depression and long chain n-3 fatty acids in adipose tissue in adults from Crete. Eur J Clin Nutr. 2006;60:882–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Sarri KO, Linardakis M, Tzanakis N, Kafatos AG. Adipose DHA inversely associated with depression as measured by the beck depression inventory. Prostaglandins Leukot Essent Fatty Acids. 2008;78:117–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Astorg P, Bertrais S, Laporte F, Arnault N, Estaquio C, Galan P, et al. Plasma n-6 and n-3 polyunsaturated fatty acids as biomarkers of their dietary intakes: a cross-sectional study within a cohort of middle-aged French men and women. Eur J Clin Nutr. 2008;62:1155–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Fitten LJ, Ortiz F, Fairbanks L, Rosenthal M, Cole GN, Nourhashemi F, et al. Depression, diabetes and metabolic-nutritional factors in elderly hispanics. J Nutr Health Aging. 2008;12:634–40.PubMedGoogle Scholar
  71. 71.
    McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Pandey GN. Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. J Affect Disord. 2010.Google Scholar
  72. 72.
    Assies J, Pouwer F, Lok A, Mocking RJ, Bockting CL, Visser I, et al. Plasma and erythrocyte fatty acid patterns in patients with recurrent depression: a matched case-control study. PLoS ONE. 2010;5:e10635.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Riemer S, Maes M, Christophe A, Rief W. Lowered omega-3 PUFAs are related to major depression, but not to somatization syndrome. J Affect Disord. 2010;123:173–80.Google Scholar
  74. 74.
    Swenne I, Rosling A, Tengblad S, Vessby B. Omega-3 polyunsaturated essential fatty acids are associated with depression in adolescents with eating disorders and weight loss. Acta Paediatr. 2011;100:1610–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Pottala JV, Talley JA, Churchill SW, Lynch DA, von Schacky C, Harris WS. Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostaglandins Leukot Essent Fatty Acids. 2012;86:161–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Lotrich FE, Sears B, McNamara RK. Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: relationship with interleukin-6. Brain Behav Immun. 2013;31:48–53.PubMedCrossRefGoogle Scholar
  77. 77.
    McNamara RK, Strimpfel J, Jandacek R, Rider T, Tso P, Welge JA, et al. Detection and treatment of long-chain omega-3 fatty acid deficiency in adolescents with SSRI-resistant major depressive disorder. PharmaNutrition. 2014;2:38–46.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Persons JE, Robinson JG, Ammann EM, Coryell WH, Espeland MA, Harris WS, et al. Omega-3 fatty acid biomarkers and subsequent depressive symptoms. Int J Geriatr Psychiatry. 2014;29:747–57.PubMedCrossRefGoogle Scholar
  79. 79.
    Lin PY, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry. 2010;68:140–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Meyer BJ, Grenyer BF, Crowe T, Owen AJ, Grigonis-Deane EM, Howe PR. Improvement of major depression is associated with increased erythrocyte DHA. Lipids. 2013;48:863–8.PubMedCrossRefGoogle Scholar
  81. 81.
    McNamara RK, Hahn CG, Jandacek R, Rider T, Tso P, Stanford KE, et al. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry. 2007;62:17–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Conklin SM, Runyan CA, Leonard S, Reddy RD, Muldoon MF, Yao JK. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder. Prostaglandins Leukot Essent Fatty Acids. 2010;82:111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hamazaki K, Hamazaki T, Inadera H. Fatty acid composition in the postmortem amygdala of patients with schizophrenia, bipolar disorder, and major depressive disorder. J Psychiatric Res. 2012;46:1024–8.CrossRefGoogle Scholar
  84. 84.
    Hamazaki K, Hamazaki T, Inadera H. Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder. Psychiatry Res. 2013;210:346–50.PubMedCrossRefGoogle Scholar
  85. 85.
    McNamara RK, Jandacek R, Tso P, Dwivedi Y, Ren X, Pandey GN. Lower docosahexaenoic acid concentrations in the postmortem prefrontal cortex of adult depressed suicide victims compared with controls without cardiovascular disease. J Psychiatric Res. 2013;47:1187–91.CrossRefGoogle Scholar
  86. 86.
    Lalovic A, Klempan T, Sequeira A, Luheshi G, Turecki G. Altered expression of lipid metabolism and immune response genes in the frontal cortex of suicide completers. J Affect Disord. 2010;120:24–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Lalovic A, Levy E, Canetti L, Sequeira A, Montoudis A, Turecki G. Fatty acid composition in postmortem brains of people who completed suicide. J Psychiatry Neurosci. 2007;32:363–70.PubMedPubMedCentralGoogle Scholar
  88. 88.
    McNamara RK, Jandacek R, Rider T, Tso P, Dwivedi Y, Roberts RC, et al. Fatty acid composition of the postmortem prefrontal cortex of adolescent male and female suicide victims. Prostaglandins Leukot Essent Fatty Acids. 2009;80:19–26.PubMedCrossRefGoogle Scholar
  89. 89.
    Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry. 1994;51:8–19.PubMedCrossRefGoogle Scholar
  90. 90.
    Marcus SM, Young EA, Kerber KB, Kornstein S, Farabaugh AH, Mitchell J, et al. Gender differences in depression: findings from the STAR*D study. J Affect Disord. 2005;87:141–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Grigoriadis S, Robinson GE. Gender issues in depression. Ann Clin Psychiatry. 2007;19:247–55.PubMedCrossRefGoogle Scholar
  92. 92.
    Timonen M, Horrobin D, Jokelainen J, Laitinen J, Herva A, Rasanen P. Fish consumption and depression: the Northern Finland 1966 birth cohort study. J Affect Disord. 2004;82:447–52.PubMedGoogle Scholar
  93. 93.
    Colangelo LA, He K, Whooley MA, Daviglus ML, Liu K. Higher dietary intake of long-chain omega-3 polyunsaturated fatty acids is inversely associated with depressive symptoms in women. Nutrition. 2009;25:1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hibbeln JR. Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J Affect Disord. 2002;69:15–29.PubMedCrossRefGoogle Scholar
  95. 95.
    da Rocha CM, Kac G. High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression. Matern Child Nutr. 2012;8:36–48.PubMedCrossRefGoogle Scholar
  96. 96.
    Golding J, Steer C, Emmett P, Davis JM, Hibbeln JR. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiology. 2009;20:598–603.PubMedCrossRefGoogle Scholar
  97. 97.
    Sontrop J, Avison WR, Evers SE, Speechley KN, Campbell MK. Depressive symptoms during pregnancy in relation to fish consumption and intake of n-3 polyunsaturated fatty acids. Paediatr Perinat Epidemiol. 2008;22:389–99.PubMedCrossRefGoogle Scholar
  98. 98.
    Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Fish and fat intake and prevalence of depressive symptoms during pregnancy in Japan: baseline data from the Kyushu Okinawa maternal and child health study. J Psychiatric Res. 2013;47:572–8.CrossRefGoogle Scholar
  99. 99.
    Rees AM, Austin MP, Owen C, Parker G. Omega-3 deficiency associated with perinatal depression: case control study. Psychiatry Res. 2009;166:254–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Mattes E, McCarthy S, Gong G, van Eekelen JA, Dunstan J, Foster J, et al. Maternal mood scores in mid-pregnancy are related to aspects of neonatal immune function. Brain Behav Immun. 2009;23:380–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Cosatto VF, Else PL, Meyer BJ. Do pregnant women and those at risk of developing post-natal depression consume lower amounts of long chain omega-3 polyunsaturated fatty acids? Nutrients. 2010;2:198–213.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Otto SJ, de Groot RH, Hornstra G. Increased risk of postpartum depressive symptoms is associated with slower normalization after pregnancy of the functional docosahexaenoic acid status. Prostaglandins Leukot Essent Fatty Acids. 2003;69:237–43.PubMedCrossRefGoogle Scholar
  103. 103.
    De Vriese SR, Christophe AB, Maes M. Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: further evidence that lowered n-PUFAs are related to major depression. Life Sci. 2003;73:3181–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Markhus MW, Skotheim S, Graff IE, Froyland L, Braarud HC, Stormark KM, et al. Low omega-3 index in pregnancy is a possible biological risk factor for postpartum depression. PLoS ONE. 2013;8:e67617.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Miyake Y, Sasaki S, Yokoyama T, Tanaka K, Ohya Y, Fukushima W, et al. Risk of postpartum depression in relation to dietary fish and fat intake in Japan: the Osaka maternal and child health study. Psychol Med. 2006;36:1727–35.PubMedCrossRefGoogle Scholar
  106. 106.
    Browne JC, Scott KM, Silvers KM. Fish consumption in pregnancy and omega-3 status after birth are not associated with postnatal depression. J Affect Disord. 2006;90:131–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Strom M, Mortensen EL, Halldorson TI, Thorsdottir I, Olsen SF. Fish and long-chain n-3 polyunsaturated fatty acid intakes during pregnancy and risk of postpartum depression: a prospective study based on a large national birth cohort. Am J Clin Nutr. 2009;90:149–55.PubMedCrossRefGoogle Scholar
  108. 108.
    Parker G, Hegarty B, Granville-Smith I, Ho J, Paterson A, Gokiert A, et al. Is essential fatty acid status in late pregnancy predictive of post-natal depression? Acta Psychiatr Scand. 2014.Google Scholar
  109. 109.
    Sallis H, Steer C, Paternoster L, Davey Smith G, Evans J. Perinatal depression and omega-3 fatty acids: a Mendelian randomisation study. J Affect Disord. 2014;166:124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Flores DL, Hendrick VC. Etiology and treatment of postpartum depression. Curr Psychiatry Rep. 2002;4:461–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Xie L, Innis SM. Association of fatty acid desaturase gene polymorphisms with blood lipid essential fatty acids and perinatal depression among Canadian women: a pilot study. J Nutrigenet Nutrigenomics. 2009;2:243–50.PubMedCrossRefGoogle Scholar
  112. 112.
    Molto-Puigmarti C, Plat J, Mensink RP, Muller A, Jansen E, Zeegers MP, et al. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91:1368–76.PubMedCrossRefGoogle Scholar
  113. 113.
    Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol. 2003;13:267–71.PubMedCrossRefGoogle Scholar
  114. 114.
    Nemets B, Stahl Z, Belmaker RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar disorder. Am J Psychiatry. 2002;159:477–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Peet M, Horrobin D. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite adequate treatment with standard drugs. Arch Gen Psychiatry. 2002;59:913–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Nemets H, Nemets B, Apter A, Bracha Z, Belmaker RH. Omega-3 treatment of childhood depression: a controlled, double-blind pilot study. Am J Psychiatry. 2006;163:1098–100.PubMedCrossRefGoogle Scholar
  117. 117.
    Lucas M, Asselin G, Merette C, Poulin MJ, Dodin S. Ethyl-eicosapentaenoic acid for the treatment of psychological distress and depressive symptoms in middle-aged women: a double-blind, placebo-controlled, randomized clinical trial. Am J Clin Nutr. 2009;89:641–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Su KP, Huang SY, Chiu TH, Huang KC, Huang CL, Chang HC, et al. Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2008;69:644–51.PubMedCrossRefGoogle Scholar
  119. 119.
    Jazayeri S, Tehrani-Doost M, Keshavarz SA, Hosseini M, Djazayery A, Amini H, et al. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry. 2008;42:192–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Mischoulon D, Best-Popescu C, Laposata M, Merens W, Murakami JL, Wu SL, et al. A double-blind dose-finding pilot study of docosahexaenoic acid (DHA) for major depressive disorder. Eur Neuropsychopharmacol. 2008;18:639–45.PubMedCrossRefGoogle Scholar
  121. 121.
    Rondanelli M, Giacosa A, Opizzi A, Pelucchi C, La Vecchia C, Montorfano G, et al. Effect of omega-3 fatty acids supplementation on depressive symptoms and on health-related quality of life in the treatment of elderly women with depression: a double-blind, placebo-controlled, randomized clinical trial. J Am Coll Nutr. 2010;29:55–64.PubMedCrossRefGoogle Scholar
  122. 122.
    Lesperance F, Frasure-Smith N, St-Andre E, Turecki G, Lesperance P, Wisniewski SR. The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry. 2011;72:1054–62.PubMedCrossRefGoogle Scholar
  123. 123.
    Rondanelli M, Giacosa A, Opizzi A, Pelucchi C, La Vecchia C, Montorfano G, et al. Long chain omega 3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J Nutr Health Aging. 2011;15:37–44.PubMedCrossRefGoogle Scholar
  124. 124.
    Sinn N, Milte CM, Street SJ, Buckley JD, Coates AM, Petkov J, et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr. 2012;107:1682–93.PubMedCrossRefGoogle Scholar
  125. 125.
    Mozaffari-Khosravi H, Yassini-Ardakani M, Karamati M, Shariati-Bafghi SE. Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: a randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol. 2013;23:636–44.PubMedCrossRefGoogle Scholar
  126. 126.
    da Silva TM, Munhoz RP, Alvarez C, Naliwaiko K, Kiss A, Andreatini R, et al. Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord. 2008;111:351–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, Puryear LJ. A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry. 2003;160:996–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Silvers KM, Woolley CC, Hamilton FC, Watts PM, Watson RA. Randomised double-blind placebo-controlled trial of fish oil in the treatment of depression. Prostaglandins Leukot Essent Fatty Acids. 2005;72:211–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Grenyer BF, Crowe T, Meyer B, Owen AJ, Grigonis-Deane EM, Caputi P, et al. Fish oil supplementation in the treatment of major depression: a randomised double-blind placebo-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1393–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Rogers PJ, Appleton KM, Kessler D, Peters TJ, Gunnell D, Hayward RC, et al. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr. 2008;99:421–31.PubMedCrossRefGoogle Scholar
  131. 131.
    Mischoulon D, Nierenberg AA, Schettler PJ, Kinkead BL, Fehling K, Martinson MA, et al. A double-blind, randomized controlled clinical trial comparing eicosapentaenoic acid versus docosahexaenoic acid for depression. J Clin Psychiatry. 2014.Google Scholar
  132. 132.
    Bot M, Pouwer F, Assies J, Jansen EH, Diamant M, Snoek FJ, et al. Eicosapentaenoic acid as an add-on to antidepressant medication for co-morbid major depression in patients with diabetes mellitus: a randomized, double-blind placebo-controlled study. J Affect Disord. 2010.Google Scholar
  133. 133.
    Lin PY, Su KP. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J Clin Psychiatry. 2007;68:1056–61.PubMedCrossRefGoogle Scholar
  134. 134.
    Ross BM, Seguin J, Sieswerda LE. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis. 2007;6:21.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009;28:525–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Rocha Araujo DM, Vilarim MM, Nardi AE. What is the effectiveness of the use of polyunsaturated fatty acid omega-3 in the treatment of depression? Expert Rev Neurother. 2010;10:1117–29.PubMedCrossRefGoogle Scholar
  137. 137.
    Appleton KM, Rogers PJ, Ness AR. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am J Clin Nutr. 2010;91:757–70.PubMedCrossRefGoogle Scholar
  138. 138.
    Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72:1577–84.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, et al. Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS ONE. 2014;9:e96905.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Bloch MH, Hannestad J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry. 2012;17:1272–82.PubMedCrossRefGoogle Scholar
  141. 141.
    Jans LA, Giltay EJ, Van der Does AJ. The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression. Br J Nutr. 2010;104:1577–85.PubMedCrossRefGoogle Scholar
  142. 142.
    Freeman MP, Hibbeln JR, Wisner KL, Brumbach BH, Watchman M, Gelenberg AJ. Randomized dose-ranging pilot trial of omega-3 fatty acids for postpartum depression. Acta Psychiatr Scand. 2006;113:31–5.PubMedCrossRefGoogle Scholar
  143. 143.
    Freeman MP, Davis M, Sinha P, Wisner KL, Hibbeln JR, Gelenberg AJ. Omega-3 fatty acids and supportive psychotherapy for perinatal depression: a randomized placebo-controlled study. J Affect Disord. 2008;110:142–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Rees AM, Austin MP, Parker GB. Omega-3 fatty acids as a treatment for perinatal depression: randomized double-blind placebo-controlled trial. Aust N Z J Psychiatry. 2008;42:199–205.PubMedCrossRefGoogle Scholar
  145. 145.
    Marangell LB, Martinez JM, Zboyan HA, Chong H, Puryear LJ. Omega-3 fatty acids for the prevention of postpartum depression: negative data from a preliminary, open-label pilot study. Depress Anxiety. 2004;19:20–3.PubMedCrossRefGoogle Scholar
  146. 146.
    Llorente AM, Jensen CL, Voigt RG, Fraley JK, Berretta MC, Heird WC. Effect of maternal docosahexaenoic acid supplementation on postpartum depression and information processing. Am J Obstet Gynecol. 2003;188:1348–53.PubMedCrossRefGoogle Scholar
  147. 147.
    Doornbos B, van Goor SA, Dijck-Brouwer DA, Schaafsma A, Korf J, Muskiet FA. Supplementation of a low dose of DHA or DHA + AA does not prevent peripartum depressive symptoms in a small population based sample. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:49–52.PubMedCrossRefGoogle Scholar
  148. 148.
    Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P, et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304:1675–83.PubMedCrossRefGoogle Scholar
  149. 149.
    Mozurkewich EL, Clinton CM, Chilimigras JL, Hamilton SE, Allbaugh LJ, Berman DR, et al. The mothers, omega-3, and mental health study: a double-blind, randomized controlled trial. Am J Obstet Gynecol. 2013;208(313):e1–9.Google Scholar
  150. 150.
    Krauss-Etschmann S, Shadid R, Campoy C, Hoster E, Demmelmair H, Jimenez M, et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am J Clin Nutr. 2007;85:1392–400.PubMedGoogle Scholar
  151. 151.
    Beskow J, Gottfries CG, Roos BE, Winblad B. Determination of monoamine and monoamine metabolites in the human brain: post mortem studies in a group of suicides and in a control group. Acta Psychiatry Scand. 1976;53:7–20.CrossRefGoogle Scholar
  152. 152.
    Lloyd KG, Farley IJ, Deck JHN, Hornykiewicz O. Serotonin and 5-hydroxyindoleactetic acid in discrete areas of the brain stem in suicide victims and control patients. Adv Biochem Psychopharmacol. 1974;11:387–97.PubMedGoogle Scholar
  153. 153.
    Shaw DM, Camps FE, Eccleston EG. 5-hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry. 1967;113:1407–11.PubMedCrossRefGoogle Scholar
  154. 154.
    Levant B, Ozias MK, Davis PF, Winter M, Russell KL, Carlson SE, et al. Decreased brain docosahexaenoic acid content produces neurobiological effects associated with depression: interactions with reproductive status in female rats. Psychoneuroendocrinology. 2008;33:1279–92.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    McNamara RK, Able J, Liu Y, Jandacek R, Rider T, Tso P, et al. Omega-3 fatty acid deficiency during perinatal development increases serotonin turnover in the prefrontal cortex and decreases midbrain tryptophan hydroxylase-2 expression in adult female rats: dissociation from estrogenic effects. J Psychiatric Res. 2009;43:656–63.CrossRefGoogle Scholar
  156. 156.
    McNamara RK, Jandacek R, Rider T, Tso P, Cole-Strauss A, Lipton JW. Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover. Prostaglandins Leukot Essent Fatty Acids. 2010;83:185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, et al. The role of 5-HT(1A) receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology. 2011;62:198–1.Google Scholar
  158. 158.
    Sugasini D, Lokesh BR. Rats given linseed oil in microemulsion forms enriches the brain synaptic membrane with docosahexaenoic acid and enhances the neurotransmitter levels in the brain. Nutr Neurosci. 2014.Google Scholar
  159. 159.
    Vines A, Delattre AM, Lima MM, Rodrigues LS, Suchecki D, Machado RB, et al. The role of 5-HT(1)A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism. Neuropharmacology. 2012;62:184–91.PubMedCrossRefGoogle Scholar
  160. 160.
    Carabelli B, Delattre AM, Pudell C, Mori MA, Suchecki D, Machado RB, et al. The antidepressant-like effect of fish oil: possible role of ventral hippocampal 5-HT post-synaptic receptor. Mol Neurobiol. 2014.Google Scholar
  161. 161.
    Vancassel S, Leman S, Hanonick L, Denis S, Roger J, Nollet M, et al. n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J Lipid Res. 2008;49:340–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Arango V, Ernsberger P, Marzuk J, Chen S, Tierney H, Stanley M, et al. Autoradiographic demonstration of increased serotonin 5-HT2 and β-adrenergic receptor binding sites in the brain of suicide victims. Arch Gen Psychiatry. 1990;47:1038–47.PubMedCrossRefGoogle Scholar
  163. 163.
    Mann JJ, Arango V. Abnormalities of brain structure and function in mood disorders. In: Charney DS, Neslter EJ, Bunney BS, editors. Neurobiology of mental illness. New York: Oxford University Press; 1999. p. 385–93.Google Scholar
  164. 164.
    Yates M, Ferrier IN. 5-HT1A receptor in major depression. J Psychopharmacol. 1990;4:59–67.CrossRefGoogle Scholar
  165. 165.
    Yates M, Leake A, Candy JM, Fairbairn AF, McKeith IG, Ferrier IN. 5-HT2 receptor changes in major depression. Biol Psychiatry. 1990;27:489–96.PubMedCrossRefGoogle Scholar
  166. 166.
    Baldessarini RJ. Drugs and the treatment of psychiatric disorders: depression and anxiety disorders. In: Hardman JG, Limbird LE, Gilman AG, editors. The pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 447–84.Google Scholar
  167. 167.
    Delion S, Chalon S, Herault J, Guilloteau D, Bresnard JC, Durand G. Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotonergic neurotransmission in rats. J Nutr. 1994;124:2466–75.PubMedGoogle Scholar
  168. 168.
    Delion S, Chalon S, Guilloteau D, Besnard JC, Durand G. alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J Neurochem. 1996;66:1582–91.PubMedCrossRefGoogle Scholar
  169. 169.
    Stockmeier CA. Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatric Res. 2003;37:357–73.CrossRefGoogle Scholar
  170. 170.
    Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000;57:174–80.PubMedCrossRefGoogle Scholar
  171. 171.
    Drevets WC, Frank E, Price JC, Kupfer DJ, Greer PJ, Mathis C. Serotonin type-1A receptor imaging in depression. Nucl Med Biol. 2000;27:499–507.PubMedCrossRefGoogle Scholar
  172. 172.
    Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol. 2009;88:17–31.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Biegon A, Israeli M. Regionally selective increased in β-adrenergic receptor density in the brains of suicide victims. Brain Res. 1988;442:199–203.PubMedCrossRefGoogle Scholar
  174. 174.
    Vetulani J, Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cAMP generating system in limbic forebrain. Nature. 1975;22:181.Google Scholar
  175. 175.
    Mathieu G, Denis S, Langelier B, Denis I, Lavialle M, Vancassel S. DHA enhances the noradrenaline release by SH-SY5Y cells. Neurochem Int. 2010;56:94–100.PubMedCrossRefGoogle Scholar
  176. 176.
    Joardar A, Sen AK, Das S. Docosahexaenoic acid facilitates cell maturation and beta-adrenergic transmission in astrocytes. J Lipid Res. 2006;47:571–81.PubMedCrossRefGoogle Scholar
  177. 177.
    Takeuchi T, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res. 2002;131:193–203.PubMedCrossRefGoogle Scholar
  178. 178.
    Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Moses-Kolko EL, Price JC, Wisner KL, Hanusa BH, Meltzer CC, Berga SL, et al. Postpartum and depression status are associated with lower [[(1)(1)C]raclopride BP(ND) in reproductive-age women. Neuropsychopharmacology. 2012;37:1422–32.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Papp M, Klimek V, Willner P. Parallel changes in dopamine D2 receptor binding in limbic forebrain associated with chronic mild stress-induced anhedonia and its reversal by imipramine. Psychopharmacology. 1994;115:441–6.PubMedCrossRefGoogle Scholar
  181. 181.
    Bjornebekk A, Mathe AA, Brene S. Isolated Flinders Sensitive Line rats have decreased dopamine D2 receptor mRNA. NeuroReport. 2007;18:1039–43.PubMedCrossRefGoogle Scholar
  182. 182.
    Yaroslavsky I, Colletti M, Jiao X, Tejani-Butt S. Strain differences in the distribution of dopamine (DA-2 and DA-3) receptor sites in rat brain. Life Sci. 2006;79:772–6.PubMedCrossRefGoogle Scholar
  183. 183.
    Kram ML, Kramer GL, Ronan PJ, Steciuk M, Petty F. Dopamine receptors and learned helplessness in the rat: an autoradiographic study. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:639–45.PubMedCrossRefGoogle Scholar
  184. 184.
    Davis PF, Ozias MK, Carlson SE, Reed GA, Winter MK, McCarson KE, et al. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status. Nutr Neurosci. 2010;13:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Sublette ME, Galfalvy HC, Hibbeln JR, Keilp JG, Malone KM, Oquendo MA, et al. Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol. 2014;17:383–91.PubMedCrossRefGoogle Scholar
  186. 186.
    Zimmer L, Delion S, Vancassel S, Durand G, Guilloteau D, Bodard S, et al. Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J Lipid Res. 2000;41:32–40.PubMedGoogle Scholar
  187. 187.
    Zimmer L, Hembert S, Durand G, Breton P, Guilloteau D, Besnard JC, et al. Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neurosci Lett. 1998;240:177–81.PubMedCrossRefGoogle Scholar
  188. 188.
    Zimmer L, Vancassel S, Cantagrel S, Breton P, Delamanche S, Guilloteau D, et al. The dopamine mesocorticolimbic pathway is affected by deficiency in n-3 polyunsaturated fatty acids. Am J Clin Nutr. 2002;75:662–7.PubMedGoogle Scholar
  189. 189.
    Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N Jr, et al. Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem. 2005;95:1550–62.PubMedCrossRefGoogle Scholar
  190. 190.
    Kuperstein F, Eilam R, Yavin E. Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J Neurochem. 2008;106:662–71.PubMedCrossRefGoogle Scholar
  191. 191.
    Levant B, Zarcone TJ, Fowler SC. Developmental effects of dietary n-3 fatty acids on activity and response to novelty. Physiol Behav. 2010;101:176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Plotsky PM, Owens MJ, Nemeroff CB. Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am. 1998;21:293–307.PubMedCrossRefGoogle Scholar
  193. 193.
    Arbabi L, Baharuldin MT, Moklas MA, Fakurazi S, Muhammad SI. Antidepressant-like effects of omega-3 fatty acids in postpartum model of depression in rats. Behav Brain Res. 2014;271:65–71.PubMedCrossRefGoogle Scholar
  194. 194.
    Barbadoro P, Annino I, Ponzio E, Romanelli RM, D’Errico MM, Prospero E, et al. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. Mol Nutr Food Res. 2013;57:1110–4.PubMedCrossRefGoogle Scholar
  195. 195.
    Song C, Leonard BE, Horrobin DF. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress. 2004;7:43–54.PubMedCrossRefGoogle Scholar
  196. 196.
    Ferraz AC, Delattre AM, Almendra RG, Sonagli M, Borges C, Araujo P, et al. Chronic omega-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav Brain Res. 2011;219:116–22.PubMedCrossRefGoogle Scholar
  197. 197.
    Jiang LH, Liang QY, Shi Y. Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice. Eur Rev Med Pharmacol Sci. 2012;16:1765–73.PubMedGoogle Scholar
  198. 198.
    Chen HF, Su HM. Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. J Nutr Biochem. 2013;24:70–80.PubMedCrossRefGoogle Scholar
  199. 199.
    Mathieu G, Denis S, Lavialle M, Vancassel S. Synergistic effects of stress and omega-3 fatty acid deprivation on emotional response and brain lipid composition in adult rats. Prostaglandins Leukot Essent Fatty Acids. 2008;78:391–401.PubMedCrossRefGoogle Scholar
  200. 200.
    Harauma A, Moriguchi T. Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids. 2011;46:409–16.PubMedCrossRefGoogle Scholar
  201. 201.
    Hennebelle M, Balasse L, Latour A, Champeil-Potokar G, Denis S, Lavialle M, et al. Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress. PLoS ONE. 2012;7:e42142.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Curtis MA, Kam M, Faull RL. Neurogenesis in humans. Eur J Neurosci. 2011;33:1170–4.PubMedCrossRefGoogle Scholar
  203. 203.
    Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.PubMedCrossRefGoogle Scholar
  204. 204.
    Schmidt H, Shelton R, Duman R. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology. 2011;36:2375–94.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60:804–15.PubMedCrossRefGoogle Scholar
  206. 206.
    Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136:29–37.PubMedCrossRefGoogle Scholar
  207. 207.
    Ferreira CF, Bernardi JR, Krolow R, Arcego DM, Fries GR, de Aguiar BW, et al. Vulnerability to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress in rats. Pharmacol Biochem Behav. 2013;107:11–9.PubMedCrossRefGoogle Scholar
  208. 208.
    Ferreira CF, Bernardi JR, Bosa VL, Schuch I, Goldani MZ, Kapczinski F, et al. Correlation between n-3 polyunsaturated fatty acids consumption and BDNF peripheral levels in adolescents. Lipids Health Dis. 2014;13:44.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21:1457–67.PubMedCrossRefGoogle Scholar
  210. 210.
    Blondeau N, Nguemeni C, Debruyne DN, Piens M, Wu X, Pan H, et al. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology. 2009;34:2548–59.PubMedCrossRefGoogle Scholar
  211. 211.
    Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology. 2009;34:199–211.PubMedCrossRefGoogle Scholar
  212. 212.
    Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida AC, Cavalheiro EA, et al. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav. 2010;17:33–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Wu A, Ying Z, Gomez-Pinilla F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J Neurotrauma. 2007;24:1587–95.PubMedCrossRefGoogle Scholar
  214. 214.
    Park Y, Moon HJ, Kim SH. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test. J Nutr Biochem. 2012;23:924–8.PubMedCrossRefGoogle Scholar
  215. 215.
    He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci USA. 2009;106:11370–5.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Dyall SC, Michael GJ, Michael-Titus AT. Omega-3 fatty acids reverse age-related decreases in nuclear receptors and increase neurogenesis in old rats. J Neurosci Res. 2010;88:2091–102.PubMedCrossRefGoogle Scholar
  217. 217.
    Walker AJ, Kim Y, Price JB, Kale RP, McGillivray JA, Berk M, et al. Stress, inflammation, and cellular vulnerability during early stages of affective disorders: biomarker strategies and opportunities for prevention and intervention. Front Psychiatry. 2014;5:34.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem. 2007;101:577–99.PubMedCrossRefGoogle Scholar
  219. 219.
    Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44:479–86.PubMedCrossRefGoogle Scholar
  220. 220.
    Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–63.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Lu DY, Tsao YY, Leung YM, Su KP. Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: iImplications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology. 2010;35:2238–48.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Bannenberg GL. Resolvins: current understanding and future potential in the control of inflammation. Curr Opin Drug Discov Devel. 2009;12:644–58.PubMedGoogle Scholar
  223. 223.
    Bazan NG. Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005;15:159–66.PubMedCrossRefGoogle Scholar
  224. 224.
    Ariel A, Li PL, Wang W, Tang WX, Fredman G, Hong S, et al. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J Biol Chem. 2005;280:43079–86.PubMedCrossRefGoogle Scholar
  225. 225.
    Moranis A, Delpech JC, De Smedt-Peyrusse V, Aubert A, Guesnet P, Lavialle M, et al. Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice. Brain Behav Immun. 2012;26:721–31.PubMedCrossRefGoogle Scholar
  226. 226.
    Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005;29:547–69.PubMedCrossRefGoogle Scholar
  227. 227.
    Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci. 2001;21:7397–403.PubMedPubMedCentralGoogle Scholar
  228. 228.
    DeMar JC Jr, Ma K, Bell JM, Igarashi M, Greenstein D, Rapoport SI. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J Lipid Res. 2006;47:172–80.PubMedCrossRefGoogle Scholar
  229. 229.
    Naliwaiko K, Araujo RL, da Fonseca RV, Castilho JC, Andreatini R, Bellissimo MI, et al. Effects of fish oil on the central nervous system: a new potential antidepressant? Nutr Neurosci. 2004;7:91–9.PubMedCrossRefGoogle Scholar
  230. 230.
    Ferraz AC, Kiss A, Araujo RL, Salles HM, Naliwaiko K, Pamplona J, et al. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain. Prostaglandins Leukot Essent Fatty Acids. 2008;78:183–8.PubMedCrossRefGoogle Scholar
  231. 231.
    Lakhwani L, Tongia SK, Pal VS, Agrawal RP, Nyati P, Phadnis P. Omega-3 fatty acids have antidepressant activity in forced swimming test in Wistar rats. Acta Pol Pharm. 2007;64:271–6.PubMedGoogle Scholar
  232. 232.
    Huang SY, Yang HT, Chiu CC, Pariante CM, Su KP. Omega-3 fatty acids on the forced-swimming test. J Psychiatric Res. 2008;42:58–63.CrossRefGoogle Scholar
  233. 233.
    Laino CH, Fonseca C, Sterin-Speziale N, Slobodianik N, Reines A. Potentiation of omega-3 fatty acid antidepressant-like effects with low non-antidepressant doses of fluoxetine and mirtazapine. Eur J Pharmacol. 2010;648:117–26.PubMedCrossRefGoogle Scholar
  234. 234.
    Wietrzych-Schindler M, Szyszka-Niagolov M, Ohta K, Endo Y, Perez E, de Lera AR, et al. Retinoid x receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol Psychiatry. 2011;69:788–94.PubMedCrossRefGoogle Scholar
  235. 235.
    Pudell C, Vicente BA, Delattre AM, Carabelli B, Mori MA, Suchecki D, et al. Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur J Neurosci. 2014;39:266–74.PubMedCrossRefGoogle Scholar
  236. 236.
    Frances H, Drai P, Smirnova M, Carrie I, Debray M, Bourre JM. Nutritional (n-3) polyunsaturated fatty acids influence the behavioral responses to positive events in mice. Neurosci Lett. 2000;285:223–7.PubMedCrossRefGoogle Scholar
  237. 237.
    Papp M, Willner P, Muscat R. An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology. 1991;104:255–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Mischoulon D, Papakostas GI, Dording CM, Farabaugh AH, Sonawalla SB, Agoston AM, et al. A double-blind, randomized controlled trial of ethyl-eicosapentaenoate for major depressive disorder. J Clin Psychiatry. 2009;70:1636–44.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pharmacology, Toxicology, and Therapeutics and the Kansas Intellectual and Developmental Disabilities Research CenterUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.University of Kansas Medical CenterKansas CityUSA

Personalised recommendations