Statistical Considerations in Infectious Disease Randomized Controlled Trials

  • Matthew J. HayatEmail author


Randomized controlled trials (RCT) provide the highest standard of evidence available for assessing treatment efficacy. Causal inferences are enabled and effects may be directly attributed to a treatment. The nature of infectious disease presents challenges to the design, conduct, and analysis of a trial for a new drug or therapy. Many of these challenges are statistical in nature and can be addressed with modern methods for planning and analyzing RCT data. In this chapter, some of these challenges are described and reviewed. Modern statistical modeling methods for analysis of correlated data are covered. Some challenges with sample size determination are outlined and updated methods for data monitoring, interim, and subgroup analyses detailed. Also, discernment is made between multisite and cluster randomized trials. Recommendations for best practices are included.


Randomized controlled trial Treatment efficacy Causal inference Therapy Cluster randomized trial 


  1. 1.
    Altman, D.G.: The scandal of poor medical research. BMJ 308, 283–4 (1994)CrossRefGoogle Scholar
  2. 2.
    Berben, L., Sereika, S.M., Engberg, S.: Effect size estimation: methods and examples. Int. J. Nurs. Stud. 49, 1039–1047 (2012)CrossRefGoogle Scholar
  3. 3.
    Cox, D.R.: Planning of Experiments. Wiley, New York (1958)zbMATHGoogle Scholar
  4. 4.
    Cox, E., Borio, L., Temple, R.: Evaluating Ebola therapies-the case for RCTs. N. Engl. J. Med. 371(25), 2350 (2014)CrossRefGoogle Scholar
  5. 5.
    Diez-Roux, A.: Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am. J. Publ. Health 88, 816–822 (1998)Google Scholar
  6. 6.
    Fleiss, J.L.: The Design and Analysis of Clinical Experiments. Wiley, New York (1986)zbMATHGoogle Scholar
  7. 7.
    Friedman, L.M., Furberg, C.D., DeMets, D.L.: Fundamentals of Clinical Trials, 4th edn. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gardiner, J.C., Luo, Z., Roman, L.A.: Fixed effects, random effects and GEE: what are the differences? Stat. Med. 28, 221Y239 (2009)Google Scholar
  9. 9.
    Hayat, M.J.: Understanding sample size determination in nursing research. West. J. Nurs. Res. 35(7), 943–956 (2013)CrossRefGoogle Scholar
  10. 10.
    Hayat, M.J., Hedlin, H.: Modern statistical modeling approaches for analyzing repeated-measures data. Nurs. Res. 61(3), 188–194 (2012)CrossRefGoogle Scholar
  11. 11.
    Hayes, R.J., Bennett, S.: Simple sample size calculation for cluster-randomized trials. Int. J. Epidemiol. 28, 319–326 (1999)Google Scholar
  12. 12.
    Henao-Restrepo, A.M., Longini, I.M., Egger, M., Dean, N.E., Edmunds, W.J., Camacho, A., Carroll, M.W., Doumbia, M., Draguez, B., Duraffour, S., Enwere, G., Grais, R., Gunther, S., Hossmann, S., Kondé, M.K., Kone, S., Kuisma, E., Levine, M.M., Mandal, S., Norheim, G., Riveros, X., Soumah, A., Trelle, S., Vicari, A.S., Watson, C.H., Kéïta, S., Kieny, M.P., Røttingen, J.A.: Efficacy and effectiveness of an rvsv-vectored vaccine expressing ebola surface glycoprotein: interim results from the guinea ring vaccination cluster-randomised trial. Lancet 386(9996), 857–866 (2015)CrossRefGoogle Scholar
  13. 13.
    Hoenig, J.M., Heisey, D.M.: The pervasive fallacy of power calculations for data analysis. Am. Stat. 55, 19–24 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kairalla, J.A., Coffey, C.S., Thomann, M.A., Muller, K.E.: Adaptive trial designs: a review of barriers and opportunities. Trials 23(13), 145 (2012)CrossRefGoogle Scholar
  15. 15.
    Koch, G.G., Schwartz, T.: An overview of statistical planning to address subgroups in confirmatory clinical trials. J. Biopharm. Stat. 72–93 (2014)Google Scholar
  16. 16.
    MacArthur, R.D., Jackson, G.G.: An evaluation of the use of statistical methodology. J. Infect. Dis. 149(3), 349–354 (1984)CrossRefGoogle Scholar
  17. 17.
    Maxwell, S.E.: Ethics and Sample Size Planning. In: Panter, A.T., Sterba, S.K. (eds.) Handbook of Ethics in Quantitative Methodology, pp. 159–183. Routledge, New York (2011)Google Scholar
  18. 18.
    Mehta, C.R., Pocock, S.J.: Adaptive increase in sample size when interim results are promising: a practical guide with examples. Stat. Med. 30(28), 3267–3284 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG, for the CONSORT Group: CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trial. BMJ 340, c869 (2010)CrossRefGoogle Scholar
  20. 20.
    Olsen, C.H.: Review of the use of statistics in Infection and Immunity. Infect. Immun. 71, 6689–6692 (2003)CrossRefGoogle Scholar
  21. 21.
    Pearson, K.: The Grammar of Science. Walter Scott, London (1892)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rabe-Hesketh, S., Skrondal, A.: Multilevel and Longitudinal Modeling Using Stata. Stata Press, College Station (2005)zbMATHGoogle Scholar
  23. 23.
    Richardson, B.A., Overbaugh, J.: Basic statistical considerations in virological experiments. J. Virol. 79(2), 669–676 (2005)CrossRefGoogle Scholar
  24. 24.
    Rothwell, P.M.: Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet 365(9454), 176–86 (2005)CrossRefGoogle Scholar
  25. 25.
    Schor, S., Karten, I.: Statistical evaluation of medical journal manuscripts. JAMA 195, 1123–8 (1966)CrossRefGoogle Scholar
  26. 26.
    Schulz, K.F., Grimes, D.A.: Multiplicity in randomised trials II: subgroup and interim analyses. Lancet 365(9471), 1657–61 (2005)CrossRefGoogle Scholar
  27. 27.
    Twisk, J.W., Smidt, N., de Vente, W.: Applied analysis of recurrent events: a practical overview. J. Epidemiol. Commun. Health 59, 706Y710 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Public HealthGeorgia State UniversityAtlantaUSA

Personalised recommendations