Advertisement

Data-Intensive Analytics for Cat Bonds by Considering Supply Chain Risks

  • Linda EggertEmail author
  • Yingjie Fan
  • Stefan Voß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9748)

Abstract

Catastrophe (cat) bonds are securities that transfer catastrophic risks to capital markets. From a macroscopic perspective, cat bonds provide a way to extend insurance capacities in catastrophic environments. Financial flows are the focus of most cat bond related articles. This paper will focus on information flows. The first contribution of this paper is to provide an extended cat bond structure and analyze catastrophic risk from a systematic perspective. Policyholders of catastrophe insurances are classified into different categories according to their roles in supply chains and analyzed distinguishingly. Due to uncertainties of natural catastrophes and the diversification of policyholders, data-intensive analysis is not only required for setting and calibrating cat bond policy values, but also required for providing decision support for investors and potential policyholders. The second contribution of this paper is to propose an idea of utilizing a data-intensive analysis platform to provide decision support for all participants of the cat bond structure, including investors, potential policyholders, the insurer and reinsurer. Furthermore, we identify more factors that will impact the price of a cat bond and catastrophe insurance.

Keywords

Data-intensive analytics Cat bonds Loss probability Prediction Supply chain risk 

References

  1. 1.
    Anthes, R.A.: Data assimilation and initialization of hurricane prediction models. J. Atmos. Sci. 31(3), 702–719 (1974)CrossRefGoogle Scholar
  2. 2.
    Apte, C., Hong, S.J., Natarajan, R., Pednault, E.P., Tipu, F., Weiss, S.M.: Data-intensive analytics for predictive modeling. IBM J. Res. Dev. 47(1), 17–23 (2003)CrossRefGoogle Scholar
  3. 3.
    Barrieu, P., Loubergé, H.: Hybrid cat bonds. J. Risk Insur. 76(3), 547–578 (2009)CrossRefGoogle Scholar
  4. 4.
    Benfield, A.: Annual global climate and catastrophe report (2015). http://thoughtleadership.aonbenfield.com/Documents/20160113-ab-if-annual-climate-catastrophe-report.pdf. Accessed 19 Feb 2016
  5. 5.
    Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)CrossRefGoogle Scholar
  6. 6.
    Cummins, J.D.: Convergence in wholesale financial services: reinsurance and investment banking. Geneva Pap. Risk Insur. Issues Pract. 30(2), 187–222 (2005)CrossRefGoogle Scholar
  7. 7.
    Cummins, J.D.: Reinsurance for natural and man-made catastrophes in the United States: current state of the market and regulatory reforms. Risk Manag. Insur. Rev. 10(2), 179–220 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cummins, J.D.: Cat bonds and other risk-linked securities: product design and evolution of the market. The Geneva Reports, pp. 39–61 (2012)Google Scholar
  9. 9.
    Cummins, J.D., Weiss, M.A.: Convergence of insurance and financial markets: hybrid and securitized risk-transfer solutions. J. Risk Insur. 76(3), 493–545 (2009)CrossRefGoogle Scholar
  10. 10.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  11. 11.
    Dessu, S.B., Seid, A.H., Abiy, A.Z., Melesse, A.M.: Flood forecasting and stream flow simulation of the upper Awash river basin, Ethiopia using geospatial stream flow model (GeoSFM). In: Melesse, A.M., Abtew, W. (eds.) Landscape Dynamics, Soils and Hydrological Processes in Varied Climates. Springer Geography, pp. 367–384. Springer, Switzerland (2016)CrossRefGoogle Scholar
  12. 12.
    Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051), 686–688 (2005)CrossRefGoogle Scholar
  13. 13.
    Finken, S., Laux, C.: Catastrophe bonds and reinsurance: the competitive effect of information-insensitive triggers. J. Risk Insur. 76(3), 579–605 (2009)CrossRefGoogle Scholar
  14. 14.
    Frey, A., Kirova, M., Schmidt, C.: The role of indices in transferring insurance risks to the capital markets. Sigma 4, 2009 (2009)Google Scholar
  15. 15.
    Härdle, W.K., Cabrera, B.L.: Calibrating cat bonds for Mexican earthquakes. J. Risk Insur. 77(3), 625–650 (2010)Google Scholar
  16. 16.
    Hausenblas, M., Nadeau, J.: Apache drill: interactive ad-hoc analysis at scale. Big Data 1(2), 100–104 (2013)CrossRefGoogle Scholar
  17. 17.
    Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel Distrib. Comput. 74(7), 2561–2573 (2014)CrossRefGoogle Scholar
  18. 18.
    Lee, J.P., Yu, M.T.: Pricing default-risky cat bonds with moral hazard and basis risk. J. Risk Insur. 69(1), 25–44 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lessmann, S., Voß, S.: A reference model for customer-centric data mining with support vector machines. Eur. J. Oper. Res. 199(2), 520–530 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, G.F., Chen, G.R., Wu, M.C., Chou, Y.C.: Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour. Res. 45(8), 1–11 (2009)CrossRefGoogle Scholar
  21. 21.
    Liong, S.Y., Sivapragasam, C.: Flood stage forecasting with support vector machines. J. Am. Water Resour. Assoc. 38(1), 173–186 (2002)CrossRefGoogle Scholar
  22. 22.
    Liu, D., Wang, J., Wang, Y.: Application of catastrophe theory in earthquake hazard assessment and earthquake prediction research. Tectonophysics 167(2–4), 179–186 (1989)CrossRefGoogle Scholar
  23. 23.
    Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. Proc. VLDB Endowment 3(1–2), 330–339 (2010)CrossRefGoogle Scholar
  24. 24.
    Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing platform. In: 2010 IEEE International Conference Data Mining Workshops (ICDMW), pp. 170–177. IEEE (2010)Google Scholar
  25. 25.
    Nguyen, T., Lindenmeier, J.: Catastrophe risks, cat bonds and innovation resistance. Qual. Res. Financ. Markets 6(1), 75–92 (2014)CrossRefGoogle Scholar
  26. 26.
    Nowak, P., Romaniuk, M.: Pricing and simulations of catastrophe bonds. Insur. Math. Econ. 52(1), 18–28 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Otari, G., Kulkarni, R.: A review of application of data mining in earthquake prediction. Int. J. Comput. Sci. Inf. Technol. 3(2), 3570–3574 (2012)Google Scholar
  28. 28.
    Scholz, C.H., Sykes, L.R., Aggarwal, Y.P.: Earthquake prediction: a physical basis. Science 181(4102), 803–810 (1973)CrossRefGoogle Scholar
  29. 29.
    Słota, R., Król, D., Skałkowski, K., Kryza, B., Nikołow, D., Orzechowski, M., Kitowski, J.: A toolkit for storage QoS provisioning for data-intensive applications. In: Bubak, M., Szepieniec, T., Wiatr, K. (eds.) PL-Grid 2011. LNCS, vol. 7136, pp. 157–170. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Taylor, R.C.: An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics. BMC Bioinform. 11(Suppl. 12), S1 (2010)CrossRefGoogle Scholar
  31. 31.
    Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J., et al.: Storm@Twitter. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 147–156. ACM (2014)Google Scholar
  32. 32.
    Vaugirard, V.E.: Pricing catastrophe bonds by an arbitrage approach. Q. Rev. Econ. Finan. 43(1), 119–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Risk and InsuranceUniversity of HamburgHamburgGermany
  2. 2.Institute of Information Systems (IWI)University of HamburgHamburgGermany

Personalised recommendations