Advertisement

An Overview of the Ongoing Humanoid Robot Project LARMbot

  • Marco Ceccarelli
  • Daniele Cafolla
  • Mingfeng WangEmail author
  • Giuseppe Carbone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9716)

Abstract

LARMbot project aims to develop a humanoid robot with biomimetic inspiration from human anatomy by using parallel mechanisms. Previous related work is presented particularly referring to torso and leg modules. A specific design of LARMbot is proposed by using proper parallel mechanisms in torso and leg designs. A CAD model is elaborated in SolidWorks® environment and the corresponding prototype is fabricated with low-cost user-oriented features by using commercial components and parts manufactured using 3D printing. Preliminary results of experiment tests are also reported for operation evaluation and architecture design characterization.

Keywords

Humanoid robots Mechanism design Parallel mechanisms 

References

  1. 1.
    Buschmann, T., Schwienbacher, M., Favot, V., Ewald, A., Ulbrich, H.: The biped walking robot lola. J. Robot. Soc. Jpn. 30(4), 363–366 (2012)CrossRefGoogle Scholar
  2. 2.
    Cafolla, D., Ceccarelli, M.: Design and fem analysis of a novel humanoid torso. In: Multibody Mechatronic Systems, pp. 477–488. Springer (2015)Google Scholar
  3. 3.
    Cafolla, D., Ceccarelli, M.: Design and simulation of a cable-driven vertebra-based humanoid torso. Int. J. Humanoid Robot. (2015)Google Scholar
  4. 4.
    Cafolla, D., Chen, I.M., Ceccarelli, M.: An experimental characterization of human torso motion. Front. Mech. Eng. 10(4), 311–325 (2015)CrossRefGoogle Scholar
  5. 5.
    Carbone, G., Liang, C., Ceccarelli, M.: Using parallel architectures for humanoid robots. In: Kolloquium Getriebetechnik, Aachen 2009, pp. 177–188 (2009)Google Scholar
  6. 6.
    Ceccarelli, M.: LARM PKM solutions for torso design in humanoid robots. Front. Mech. Eng. 9(4), 308–316 (2014)CrossRefGoogle Scholar
  7. 7.
    Ceccarelli, M.: Kinematic design problems for low-cost easy-operation humanoid robots. In: Interdisciplinary Applications of Kinematics, pp. 91–99. Springer (2015)Google Scholar
  8. 8.
    Copilusi, C., Ceccarelli, M., Carbone, G.: Design and numerical characterization of a new leg exoskeleton for motion assistance. Robotica 33(05), 1147–1162 (2015)CrossRefGoogle Scholar
  9. 9.
    Gu, H., Ceccarelli, M.: A multiobjective optimal path planning for a 1-dof clutched ARM. Mech. Based Des. Struct. Mach. 40(1), 109–121 (2012)CrossRefGoogle Scholar
  10. 10.
    Hirose, M., Ogawa, K.: Honda humanoid robots development. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365(1850), 11–19 (2007)CrossRefGoogle Scholar
  11. 11.
    Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., Kajita, S.: Cybernetic human HRP-4C. In: 9th IEEE-RAS International Conference on Humanoid Robots, 2009, Humanoids 2009, pp. 7–14. IEEE (2009)Google Scholar
  12. 12.
    Kemp, C.C., Fitzpatrick, P., Hirukawa, H., Yokoi, K., Harada, K., Matsumoto, Y.: Humanoids. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1307–1333. Springer, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. In: Autonomous Robots, pp. 1–27 (2015)Google Scholar
  14. 14.
    Li, T., Ceccarelli, M.: Design and simulated characteristics of a new biped mechanism. Robotica 33(07), 1568–1588 (2015)CrossRefGoogle Scholar
  15. 15.
    Liang, C., Ceccarelli, M.: Design and simulation of a waist-trunk system for a humanoid robot. Mech. Mach. Theory 53, 50–65 (2012)CrossRefGoogle Scholar
  16. 16.
    Liang, C., Gu, H., Ceccarelli, M., Carbone, G.: Design and operation of a tripod walking robot via dynamics simulation. Robotica 29(05), 733–743 (2011)CrossRefGoogle Scholar
  17. 17.
    Rodriguez, N.E.N., Carbone, G., Ceccarelli, M.: Simulation results for design and operation of CALUMA, a new low-cost humanoid robot. Robotica 26(5), 601–618 (2008)Google Scholar
  18. 18.
    Saladin, K.S.: Human Anatomy, 2nd edn. McGraw Hill Higher Education, New York (2008)Google Scholar
  19. 19.
    WALK-MAN: Whole-body adaptive locomotion and manipulation, European Community’s 7th Framework Programme: FP7-ICT 611832, Cognitive Systems and Robotics: FP7-ICT-2013-10. http://www.walk-man.eu (2013–2017)
  20. 20.
    Wang, M., Ceccarelli, M., Carbone, G.: Experimental tests on operation performance of a LARM leg mechanism with 3-DOF parallel architecture. Mech. Sci. 6(1), 1 (2015)CrossRefGoogle Scholar
  21. 21.
    Wang, M., Ceccarelli, M.: Design and simulation of walking operation of a Cassino biped locomotor. In: New Trends in Mechanism and Machine Science, pp. 613–621. Springer (2015)Google Scholar
  22. 22.
    Wang, M., Ceccarelli, M.: Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms. Chin. J. Mech. Eng. 28(4), 666–675 (2015)CrossRefGoogle Scholar
  23. 23.
    Zhang, D.: Parallel Robotic Machine Tools. Springer Science & Business Media, New York (2009)Google Scholar
  24. 24.
    Zucker, M., Joo, S., Grey, M.X., Rasmussen, C., Huang, E., Stilman, M., Bobick, A.: A general-purpose system for teleoperation of the DRC-HUBO humanoid robot. J. Field Robot. 32(3), 336–351 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Ceccarelli
    • 1
  • Daniele Cafolla
    • 1
  • Mingfeng Wang
    • 1
    • 2
    Email author
  • Giuseppe Carbone
    • 1
    • 3
  1. 1.LARM: Laboratory of Robotics and MechatronicsDICeM-University of Cassino and South LatiumCassinoItaly
  2. 2.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina
  3. 3.Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldUK

Personalised recommendations