Advertisement

Infrastructure Mapping in Well-Structured Environments Using MAV

  • Yuantao Fan
  • Maytheewat Aramrattana
  • Saeed Gholami Shahbandi
  • Hassan Mashad Nemati
  • Björn Åstrand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9716)

Abstract

In this paper, we present a design of a surveying system for warehouse environment using low cost quadcopter. The system focus on mapping the infrastructure of surveyed environment. As a unique and essential parts of the warehouse, pillars from storing shelves are chosen as landmark objects for representing the environment. The map are generated based on fusing the outputs of two different methods, point cloud of corner features from Parallel Tracking and Mapping (PTAM) algorithm with estimated pillar position from a multi-stage image analysis method. Localization of the drone relies on PTAM algorithm. The system is implemented in Robot Operating System(ROS) and MATLAB, and has been successfully tested in real-world experiments. The result map after scaling has a metric error less than 20 cm.

Keywords

Point Cloud Point Cloud Data Image Analysis Algorithm Robot Operating System Image Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ethzasl ptam, 25 September 2013. http://ros.org/wiki/ethzasl_ptam
  2. 2.
    Mikrokopters, 25 September 2013. http://www.mikrokopter.de/en/home
  3. 3.
    Achtelik, M., Achtelik, M., Weiss, S., Siegwart, R.: Onboard imu and monocular vision based control for mavs in unknown in-and outdoor environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3056–3063. IEEE (2011)Google Scholar
  4. 4.
    Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009). http://multi-science.metapress.com/index/80586KML376K2711.pdf CrossRefGoogle Scholar
  5. 5.
    Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A.S., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an rgb-d camera in gps-denied environments. Int. J. Robot. Res. 31(11), 1320–1343 (2012). http://ijr.sagepub.com/content/31/11/1320.short CrossRefGoogle Scholar
  6. 6.
    Bachrach, A., Prentice, S., He, R., Roy, N.: Range-robust autonomous navigation in gps-denied environments. J. Field Robot. 28(5), 644–666 (2011). http://onlinelibrary.wiley.com/doi/10.1002/rob.20400/full CrossRefGoogle Scholar
  7. 7.
    Bills, C., Chen, J., Saxena, A.: Autonomous mav flight in indoor environments using single image perspective cues. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5776–5783. IEEE (2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980136
  8. 8.
    Blosch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based mav navigation in unknown and unstructured environments. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 21–28. IEEE (2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509920
  9. 9.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  10. 10.
    Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2815–2821. IEEE (2012)Google Scholar
  11. 11.
    Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-costquadrocopter. In: 2012 IEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS), pp. 2815–2821. IEEE (2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6385458
  12. 12.
    Fan, Y., Aramrattana, M.: Exploration and mapping of warehouses using quadrotorhelicopters (2013)Google Scholar
  13. 13.
    Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for rgb-d cameras. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2100–2106. IEEE (2013)Google Scholar
  14. 14.
    Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 225–234. IEEE (2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4538852
  15. 15.
    Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro-aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012). http://ijr.sagepub.com/content/31/11/1279.short CrossRefGoogle Scholar
  16. 16.
    Morris, W., Dryanovski, I., Xiao, J.: 3d indoor mapping for micro-uavs using hybrid range finders and multi-volume occupancy grids. In: RSS 2010 Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Zaragoza, Spain (2010)Google Scholar
  17. 17.
    Newman, P., Cole, D., Ho, K.: Outdoor slam using visual appearance and laser ranging. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1180–1187. IEEE (2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1641869
  18. 18.
    Piratla, V., Malode, S.B., Saini, S.K., Jakhotia, A., Sao, A.K., Rajpurohit, B.S., Haobijam, G.: Autonomous navigation in gps denied indoor environment using rgbd sensor, kinect. https://www.researchgate.net/publication/265111081_Autonomous_Navigation_in_GPS_Denied_Indoor_Environment_Using_RGBD_Sensor_Kinect
  19. 19.
    Pourmehr, S., Monajjemi, V.M., Vaughan, R., Mori, G.: you two! take off!: Creating, modifying and commanding groups of robots using face engagement and indirect speech in voice commands. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 137–142. IEEE (2013)Google Scholar
  20. 20.
    Pravitra, C., Chowdhary, G., Johnson, E.: A compact exploration strategy for indoor flight vehicles. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 3572–3577. IEEE (2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6161200
  21. 21.
    Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained mav. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 20–25. IEEE (2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980357
  22. 22.
    Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3d exploration with a micro-aerial vehicle. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 9–15. IEEE (2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6225146
  23. 23.
    Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., Siegwart, R.: Intuitive 3d maps for mav terrain exploration and obstacle avoidance. J. Intell. Robot. Syst. 61(1–4), 473–493 (2011). http://link.springer.com/article/10.1007/s10846-010-9491-y CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuantao Fan
    • 1
  • Maytheewat Aramrattana
    • 1
  • Saeed Gholami Shahbandi
    • 1
  • Hassan Mashad Nemati
    • 1
  • Björn Åstrand
    • 1
  1. 1.School of Information TechnologyHalmstad UniversityHalmsatdSweden

Personalised recommendations