Advertisement

Category Theoretic Semantics for Theorem Proving in Logic Programming: Embracing the Laxness

  • Ekaterina KomendantskayaEmail author
  • John Power
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9608)

Abstract

A propositional logic program P may be identified with a \(P_fP_f\)-coalgebra on the set of atomic propositions in the program. The corresponding \(C(P_fP_f)\)-coalgebra, where \(C(P_fP_f)\) is the cofree comonad on \(P_fP_f\), describes derivations by resolution. Using lax semantics, that correspondence may be extended to a class of first-order logic programs without existential variables. The resulting extension captures the proofs by term-matching resolution in logic programming. Refining the lax approach, we further extend it to arbitrary logic programs. We also exhibit a refinement of Bonchi and Zanasi’s saturation semantics for logic programming that complements lax semantics.

Keywords

Logic programming Coalgebra Term-matching resolution Coinductive derivation tree Lawvere theories Lax transformations Kan extensions 

References

  1. 1.
    Amato, G., Lipton, J., McGrail, R.: On the algebraic structure of declarative programming languages. Theor. Comput. Sci. 410(46), 4626–4671 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benabou, J.: Introduction to bicategories. In: Bénabou, J., Davis, R., Dold, A., Isbell, J., MacLane, S., Oberst, U., Roos, J.-E. (eds.) Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1–77. Springer, Heidelberg (1967)Google Scholar
  3. 3.
    Blackwell, R., Kelly, G.M., Power, A.J.: Two-dimensional monad theory. J. Pure Appl. Algebra 59, 1–41 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonchi, F., Montanari, U.: Reactive systems, (semi-)saturated semantics and coalgebras on presheaves. Theor. Comput. Sci. 410(41), 4044–4066 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruni, R., Montanari, U., Rossi, F.: An interactive semantics of logic programming. TPLP 1(6), 647–690 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bonchi, F., Zanasi, F.: Saturated semantics for coalgebraic logic programming. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 80–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bonchi, F., Zanasi, F.: Bialgebraic semantics for logic programming. CoRR abs/1502.06095 (2015)Google Scholar
  8. 8.
    Comini, M., Levi, G., Meo, M.C.: A theory of observables for logic programs. Inf. Comput. 169(1), 23–80 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fu, P., Komendantskaya, E.: A type-theoretic approach to resolution. In: Falaschi, M., et al. (eds.) LOPSTR 2015. LNCS, vol. 9527, pp. 91–106. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27436-2_6 CrossRefGoogle Scholar
  10. 10.
    Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive resolution. In: Kiselyov, O., King, A., et al. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 126–143. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29604-3_9 CrossRefGoogle Scholar
  11. 11.
    Jones, S.P., Jones, M., Meijer, E.: Type classes: an exploration of the design space. In: Haskell Workshop (1997)Google Scholar
  12. 12.
    Gupta, G., Costa, V.: Optimal implementation of and-or parallel prolog. In: PARLE 1992, pp. 71–92 (1994)Google Scholar
  13. 13.
    Jifeng, H., Hoare, C.A.R.: Categorical semantics for programming languages. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 402–417. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  14. 14.
    Jifeng, H., Hoare, C.A.R.: Data refinement in a categorical setting. Technical Monograph PRG-90. Oxford University Computing Laboratory, Programming Research Group, Oxford (1990)Google Scholar
  15. 15.
    Johann, P., Komendantskaya, E., Komendantskiy, V.: Structural resolution for logic programming. In: Technical Communications of ICLP 2015 (2015)Google Scholar
  16. 16.
    Kelly, G.M.: Coherence theorems for lax algebras and for distributive laws. In: Kelly, G.M. (ed.) Category Seminar. Lecture Notes in Mathematics, vol. 420, pp. 281–375. Spriniger, Heidelberg (1974)CrossRefGoogle Scholar
  17. 17.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Math. Soc. Lecture Notes Series, vol. 64. Cambridge University Press, Cambridge (1982)Google Scholar
  18. 18.
    Kinoshita, Y., Power, A.J.: Lax naturality through enrichment. J. Pure Appl. Algebra 112, 53–72 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kinoshita, Y., Power, J.: A fibrational semantics for logic programs. In: Dyckhoff, R., Herre, H., Schroeder-Heister, P. (eds.) ELP 1996. LNCS (LNAI), vol. 1050, pp. 177–191. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Komendantskaya, E., McCusker, G., Power, J.: Coalgebraic semantics for parallel derivation strategies in logic programming. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 111–127. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Komendantskaya, E., Power, J.: Coalgebraic semantics for derivations in logic programming. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 268–282. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Komendantskaya, E., Power, J.: Coalgebraic derivations in logic programming. In: CSL. LIPIcs, pp. 352–366. Schloss Dagstuhl (2011)Google Scholar
  23. 23.
    Komendantskaya, E., Power, J., Schmidt, M.: Coalgebraic logic programming: from Semantics to Implementation. J. Log. Comput. 26(2), 745–783 (2016)CrossRefGoogle Scholar
  24. 24.
    Komendantskaya, E., Schmidt, M., Heras, J.: Exploiting parallelism in coalgebraic logic programming. Electr. Notes Theor. Comput. Sci. 303, 121–148 (2014)CrossRefGoogle Scholar
  25. 25.
    Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefzbMATHGoogle Scholar
  26. 26.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer, Heidelberg (1971)CrossRefzbMATHGoogle Scholar
  27. 27.
    Power, A.J.: An algebraic formulation for data refinement. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1989. LNCS, vol. 442, pp. 390–401. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  28. 28.
    Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)zbMATHGoogle Scholar
  32. 32.
    Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2, 149–168 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Terese: Term Rewriting Systems. Cambridge University Press (2003)Google Scholar
  34. 34.
    Worrell, J.: Terminal sequences for accessible endofunctors. In: Proceedings of the CMCS 1999. Electronic Notes in Theoretical Computer Science, vol. 19, pp. 24–38 (1999)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceHeriot-Watt UniversityEdinburghUK
  2. 2.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations