# Transitivity and Difunctionality of Bisimulations

• H. Peter Gumm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9608)

## Abstract

Bisimilarity and observational equivalence are notions that agree in many classical models of coalgebras, such as e.g. Kripke structures. In the general category $$Set_{F}$$ of $$F-$$coalgebras these notions may, however, diverge. In many cases, observational equivalence, being transitive, turns out to be more useful.

In this paper, we shall investigate the role of transitivity for the largest bisimulation of a coalgebra. Passing to relations between two coalgebras, we choose difunctionality as generalization of transitivity. Since in $$Set_{F}$$ bisimulations are known to coincide with $$\bar{F}-$$simulations, we are led to study the notion of $$L-$$similarity, where L is a relation lifting.

## References

1. 1.
Aczel, P., Mendler, N.: A final coalgebra theorem. In: Pitt, D.H., Rydeheard, D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)
2. 2.
Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)
3. 3.
Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 144(2), 299–315 (1993)
4. 4.
Gumm, H.P.: Elements of the General Theory of Coalgebras. LUATCS 1999. Rand Afrikaans University, Johannesburg (1999)Google Scholar
5. 5.
Gumm, H.P.: Functors for coalgebras. Algebra Univers. 45, 135–147 (2001)
6. 6.
Gumm, H.P., Schröder, T.: Coalgebraic structure from weak limit preserving functors. Electron. Notes Theor. Comput. Sci. 33, 113–133 (2000)
7. 7.
Gumm, H.P., Schröder, T.: Products of coalgebras. Algebra Univers. 46, 163–185 (2001)
8. 8.
Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra Univers. 53, 229–252 (2005)
9. 9.
Gumm, H.P., Zarrad, M.: Coalgebraic simulations and congruences. In: Bonsangue, M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 118–134. Springer, Heidelberg (2014)Google Scholar
10. 10.
Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)
11. 11.
Henkel, C.: Klassifikation coalgebraischer Typfunktoren. Diplomarbeit, Universität Marburg (2010)Google Scholar
12. 12.
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. Assoc. Comput. Mach. 32, 137–161 (1985)
13. 13.
Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inform. Comput 145(2), 107–152 (1998)
14. 14.
15. 15.
Marti, J., Venema, Y.: Lax extensions of coalgebra functors. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 150–169. Springer, Heidelberg (2012)
16. 16.
Lawrence, S.: Moss: coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)
17. 17.
Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)
18. 18.
Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bulletin de la Societe Mathematique de France 76, 114–155 (1948)
19. 19.
Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)
20. 20.
Schröder, T.: Coalgebren und Funktoren. Doktorarbeit, Universität Marburg (2001)Google Scholar
21. 21.
Staton, S.: Relating coalgebraic notions of bisimulaions. Log. Methods Comput. Sci. 7(1), 1–18 (2011)
22. 22.
Thijs, A.: Simulation and fixpoint semantics. Ph.D. thesis, University of Groningen (1996)Google Scholar
23. 23.
Trnková, V.: Some properties of set functors. Comm. Math. Univ. Carolinae 10(2), 323–352 (1969)
24. 24.