Advertisement

Transitivity and Difunctionality of Bisimulations

  • Mehdi Zarrad
  • H. Peter Gumm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9608)

Abstract

Bisimilarity and observational equivalence are notions that agree in many classical models of coalgebras, such as e.g. Kripke structures. In the general category \(Set_{F}\) of \(F-\)coalgebras these notions may, however, diverge. In many cases, observational equivalence, being transitive, turns out to be more useful.

In this paper, we shall investigate the role of transitivity for the largest bisimulation of a coalgebra. Passing to relations between two coalgebras, we choose difunctionality as generalization of transitivity. Since in \(Set_{F}\) bisimulations are known to coincide with \(\bar{F}-\)simulations, we are led to study the notion of \(L-\)similarity, where L is a relation lifting.

References

  1. 1.
    Aczel, P., Mendler, N.: A final coalgebra theorem. In: Pitt, D.H., Rydeheard, D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  2. 2.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)MATHGoogle Scholar
  3. 3.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 144(2), 299–315 (1993)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gumm, H.P.: Elements of the General Theory of Coalgebras. LUATCS 1999. Rand Afrikaans University, Johannesburg (1999)Google Scholar
  5. 5.
    Gumm, H.P.: Functors for coalgebras. Algebra Univers. 45, 135–147 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Gumm, H.P., Schröder, T.: Coalgebraic structure from weak limit preserving functors. Electron. Notes Theor. Comput. Sci. 33, 113–133 (2000)MathSciNetMATHGoogle Scholar
  7. 7.
    Gumm, H.P., Schröder, T.: Products of coalgebras. Algebra Univers. 46, 163–185 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gumm, H.P., Schröder, T.: Types and coalgebraic structure. Algebra Univers. 53, 229–252 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gumm, H.P., Zarrad, M.: Coalgebraic simulations and congruences. In: Bonsangue, M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 118–134. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Henkel, C.: Klassifikation coalgebraischer Typfunktoren. Diplomarbeit, Universität Marburg (2010)Google Scholar
  12. 12.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. Assoc. Comput. Mach. 32, 137–161 (1985)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inform. Comput 145(2), 107–152 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ihringer, T., Gumm, H.P.: Allgemeine Algebra. Heldermann Verlag, Wiesbaden (2003)Google Scholar
  15. 15.
    Marti, J., Venema, Y.: Lax extensions of coalgebra functors. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 150–169. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Lawrence, S.: Moss: coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bulletin de la Societe Mathematique de France 76, 114–155 (1948)MathSciNetMATHGoogle Scholar
  19. 19.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoret. Comput. Sci. 249(1), 3–80 (2000)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Schröder, T.: Coalgebren und Funktoren. Doktorarbeit, Universität Marburg (2001)Google Scholar
  21. 21.
    Staton, S.: Relating coalgebraic notions of bisimulaions. Log. Methods Comput. Sci. 7(1), 1–18 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Thijs, A.: Simulation and fixpoint semantics. Ph.D. thesis, University of Groningen (1996)Google Scholar
  23. 23.
    Trnková, V.: Some properties of set functors. Comm. Math. Univ. Carolinae 10(2), 323–352 (1969)MathSciNetMATHGoogle Scholar
  24. 24.
    Zarrad, M.: Verträgliche Relationen auf Coalgebren. Diplomarbeit, Universität Marburg (2012)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Philipps-Universität MarburgMarburgGermany

Personalised recommendations