Advertisement

Identity-Based Group Encryption

  • Xiling Luo
  • Yili Ren
  • Jingwen Liu
  • Jiankun Hu
  • Weiran Liu
  • Zhen Wang
  • Wei Xu
  • Qianhong WuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9723)

Abstract

Cloud computing makes it easy for people to share files anywhere and anytime with mobile end devices. There is a privacy issue in such applications even if the files are encrypted. Specially, the public keys or identities of the receivers will be exposed to the cloud server or hackers. Group Encryption (GE) is designed to achieve anonymity of the receiver(s). The existing GE schemes are all realized in the public key infrastructure (PKI) setting, in which complicated certificates management is required to ensure security. It is observed that GE is especially appealing to institutions which usually have their own closed secure user management system. In this paper, we propose a new concept, referred to as identity-based group encryption (IBGE), which realizes GE in the identity-based cryptography setting. In the IBGE, a private key generator (PKG) designates each user a secret key associated with his identity; and the user can register his identity as a group member to a group manager without leaking his secret key. Then anyone can send confidential messages to the group member without leaking the group member’s identity. However, the group manager can trace the receiver if a dispute occurs or the privacy mechanism is abused. Following this model, we propose the first IBGE scheme that is formally proven secure in the standard model. Analysis shows that our scheme is also efficient and practical.

Keywords

Group encryption Identity-based Knowledge proof 

Notes

Acknowledgments

This paper is supported by the National Key Basic Research Program (973 program) through project 2012CB315905, by the National High Technology Research and Development Program of China (863 Program) through project 2015AA017205, by the Natural Science Foundation of China through projects 61370190, 61173154, 61272501, 61402029, 61472429, 61202465, 61532021 and 61521091, by the Beijing Natural Science Foundation through project 4132056, by the Guangxi natural science foundation through project 2013GXNSFBB053005, the Innovation Fund of China Aerospace Science and Technology Corporation, Satellite Application Research Institute through project 2014-CXJJ-TX-10, the Open Project of Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University.

References

  1. 1.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptology 17(4), 297–319 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Cathalo, J., Libert, B., Yung, M.: Group encryption: non-interactive realization in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Ducas, L.: Anonymity from asymmetry: new constructions for anonymous HIBE. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. Int. J. Secur. Netw. 1(1/2), 24–45 (2006)CrossRefGoogle Scholar
  16. 16.
    Libert, B., Yung, M., Joye, M., Peters, T.: Traceable group encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 592–610. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Liu, J.K., Tsang, P.P., Wong, D.S.: Efficient verifiable ring encryption for Ad Hoc groups. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Liu, J.K., Wei, V.K., Wong, D.S.: Custodian-hiding verifiable encryption. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 51–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Liu, J.K., Tsang, P.P., Wong, D.S., Zhu, R.W.: Universal custodian-hiding verifiable encryption for discrete logarithms. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 389–409. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Qin, B., Wu, Q., Susilo, W., Mu, Y.: Publicly verifiable privacy-preserving group decryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 72–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xiling Luo
    • 1
    • 4
    • 5
  • Yili Ren
    • 1
  • Jingwen Liu
    • 2
  • Jiankun Hu
    • 3
  • Weiran Liu
    • 1
  • Zhen Wang
    • 1
  • Wei Xu
    • 2
  • Qianhong Wu
    • 1
    • 6
    Email author
  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  2. 2.Potevio Information Technology Co., Ltd.BeijingChina
  3. 3.School of Engineering and ITUniversity of New South WalesSydneyAustralia
  4. 4.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  5. 5.Beijing Key Laboratory for Network-based Cooperative Air Traffic ManagementBeijingChina
  6. 6.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingChina

Personalised recommendations