Advertisement

On the Relations Between Security Notions in Hierarchical Key Assignment Schemes for Dynamic Structures

  • Arcangelo Castiglione
  • Alfredo De Santis
  • Barbara Masucci
  • Francesco Palmieri
  • Aniello CastiglioneEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9723)

Abstract

A hierarchical key assignment scheme distribute some private information and encryption keys to a set of classes in a partially ordered hierarchy, so that the private information of higher classes can be employed to derive the keys of classes lower down in the hierarchy. A hierarchical key assignment scheme for dynamic structures allows to make dynamic updates to the hierarchy, such as addition, deletion and modification of classes and relations among them, as well as the revocation of users.

In this work we analyze security notions for hierarchical key assignment schemes supporting dynamic structures. In particular, we first propose the notion of key recovery for those schemes. Furthermore, we extend to such schemes the strong key indistinguishability and strong key recovery security definitions proposed by Freire et al. for hierarchical key assignment schemes. Finally, we investigate the relations occurring between all the state-of-the-art security notions for hierarchical key assignment schemes supporting dynamic structures, showing implications and separations which hold between such notions. In detail, we prove that also in the case of dynamic structures, security with respect to strong key indistinguishability is equivalent to the one with respect to key indistinguishability.

Keywords

Access control Key assignment Dynamic structures Dynamic adversary Strong key recovery Strong key indistinguishability 

Notes

Acknowledgments

This work has been partially supported by the Italian Ministry of Research within PRIN project “GenData 2020” (2010RTFWBH).

References

  1. 1.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972). doi: 10.1137/0201008 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983). doi: 10.1145/357369.357372 CrossRefGoogle Scholar
  3. 3.
    Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3), 18 (2009). doi: 10.1145/1455526.1455531 CrossRefGoogle Scholar
  4. 4.
    Atallah, M.J., Blanton, M., Frikken, K.B.: Key management for non-tree access hierarchies. In: Ferraiolo, D.F., Ray, I. (eds.) Proceedings of the 11th ACM Symposium on Access Control Models and Technologies, SACMAT 2006, Lake Tahoe, California, USA, 7–9 June 2006, pp. 11–18. ACM (2006). http://doi.acm.org/10.1145/1133058.1133062
  5. 5.
    Atallah, M.J., Blanton, M., Frikken, K.B.: Incorporating temporal capabilities in existing key management schemes. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 515–530. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74835-9_34 CrossRefGoogle Scholar
  6. 6.
    Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management for access hierarchies. In: Atluri, V., Meadows, C., Juels, A. (eds.) Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS 2005, Alexandria, VA, USA, 7–11 November 2005, pp. 190–202. ACM (2005). http://doi.acm.org/10.1145/1102120.1102147
  7. 7.
    Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-securetime-bound hierarchical key assignment schemes. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30–November 3 2006, pp. 288–297. ACM (2006). http://doi.acm.org/10.1145/1180405.1180441
  8. 8.
    Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound hierarchical key assignment schemes. J. Cryptology 25(2), 243–270 (2012). doi: 10.1007/s00145-010-9094-6 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cafaro, M., Civino, R., Masucci, B.: On the equivalence of two security notions for hierarchical key assignment schemes in the unconditional setting. IEEE Trans. Dependable Sec. Comput. 12(4), 485–490 (2015)CrossRefGoogle Scholar
  10. 10.
    Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment. In: 17th International Conference on Network-Based InformationSystems, NBIS 2014, pp. 263–270. IEEE (2014). http://dx.doi.org/10.1109/NBiS.2014.106
  11. 11.
    Castiglione, A., De Santis, A., Masucci, B.: Key indistinguishability vs. strong key indistinguishability for hierarchical key assignment schemes. IEEE Trans. Dependable Sec. Comput. (2015). http://dx.doi.org/10.1109/TDSC.2015.2413415
  12. 12.
    Castiglione, A., De Santis, A., Masucci, B., Palmieri, F., Castiglione, A., Li, J., Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics Secur. 11(4), 850–865 (2016). doi: 10.1109/TIFS.2015.2512533 Google Scholar
  13. 13.
    Castiglione, A., De Santis, A., Masucci, B., et al.: Cryptographic hierarchical access control for dynamic structures. Manuscript Submitted for Publication in IEEE Transactions of Information Forensics and Security (2015)Google Scholar
  14. 14.
    Chen, T., Chung, Y.: Hierarchical access control based on chinese remainder theorem and symmetric algorithm. Comput. Secur. 21(6), 565–570 (2002). doi: 10.1016/S0167-4048(02)01016-7 CrossRefGoogle Scholar
  15. 15.
    Chien, H.: Efficient time-bound hierarchical key assignment scheme. IEEE Trans. Knowl. Data Eng. 16(10), 1301–1304 (2004). doi: 10.1109/TKDE.2004.59 MathSciNetCrossRefGoogle Scholar
  16. 16.
    D’Arco, P., De Santis, A., Ferrara, A.L., Masucci, B.: Security and tradeoffs of the Akl-Taylor scheme and its variants. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 247–257. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03816-7_22 CrossRefGoogle Scholar
  17. 17.
    D’Arco, P., Santis, A.D., Ferrara, A.L., Masucci, B.: Variations on a theme by Akl and Taylor: security and tradeoffs. Theor. Comput. Sci. 411(1), 213–227 (2010). doi: 10.1016/j.tcs.2009.09.028 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    De Santis, A., Ferrara, A.L., Masucci, B.: Cryptographic key assignment schemes for any access control policy. Inf. Process. Lett. 92(4), 199–205 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    De Santis, A., Ferrara, A.L., Masucci, B.: Enforcing the security of a time-bound hierarchical key assignment scheme. Inf. Sci. 176(12), 1684–1694 (2006). doi: 10.1016/j.ins.2005.07.002 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    De Santis, A., Ferrara, A.L., Masucci, B.: Unconditionally secure key assignment schemes. Discrete Appl. Math. 154(2), 234–252 (2006). doi: 10.1016/j.dam.2005.03.025 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key assignment schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 371–382. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74456-6_34 CrossRefGoogle Scholar
  22. 22.
    De Santis, A., Ferrara, A.L., Masucci, B.: New constructions for provably-secure time-bound hierarchical key assignment schemes. In: Lotz, V., Thuraisingham, B.M. (eds.) Proceedings of the 12th ACM Symposium on Access Control Models and Technologies, SACMAT 2007, Sophia Antipolis, France, 20–22 June 2007, pp. 133–138. ACM (2007). http://doi.acm.org/10.1145/1266840.1266861
  23. 23.
    De Santis, A., Ferrara, A.L., Masucci, B.: New constructions for provably-secure time-bound hierarchical key assignment schemes. Theor. Comput. Sci. 407(1–3), 213–230 (2008). doi: 10.1016/j.tcs.2008.05.021 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key assignment schemes. Theor. Comput. Sci. 412(41), 5684–5699 (2011). doi: 10.1016/j.tcs.2011.06.024 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Freire, E.S.V., Paterson, K.G.: Provably secure key assignment schemes from factoring. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 292–309. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22497-3_19 CrossRefGoogle Scholar
  26. 26.
    Freire, E.S.V., Paterson, K.G., Poettering, B.: Simple, efficient and strongly KI-secure hierarchical key assignment schemes. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 101–114. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Harn, L., Lin, H.: A cryptographic key generation scheme for multilevel data security. Comput. Secur. 9(6), 539–546 (1990). doi: 10.1016/0167-4048(90)90132-D CrossRefGoogle Scholar
  28. 28.
    Huang, H., Chang, C.: A new cryptographic key assignment scheme with time-constraint access control in a hierarchy. Comput. Stan. Interfaces 26(3), 159–166 (2004). doi: 10.1016/S0920-5489(03)00073-4 CrossRefGoogle Scholar
  29. 29.
    Liaw, H., Wang, S., Lei, C.: A dynamic cryptographic key assignment scheme in a tree structure. Comput. Math. Appl. 25(6), 109–114 (1993). http://www.sciencedirect.com/science/article/pii/089812219390305F MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lin, C.H.: Dynamic key management schemes for access control in a hierarchy. Comput. Commun. 20(15), 1381–1385 (1997). http://www.sciencedirect.com/science/article/pii/S014036649700100X CrossRefGoogle Scholar
  31. 31.
    Lin, I.C., Hwang, M.S., Chang, C.C.: A new key assignment scheme for enforcing complicated access control policies in hierarchy. Future Gener. Comput. Syst. 19(4), pp. 457 – 462 (2003). http://www.sciencedirect.com/science/article/pii/S0167739X02002005. Selected Papers from the IEEE/ACM International Symposium on Cluster Computing and the Grid, Berlin-Brandenburg Academy of Sciences and Humanities, Berlin, Germany, 21–24 May 2002
  32. 32.
    MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for assigning cryptographic keys to control access in a hierarchy. IEEE Trans. Comput. 34(9), 797–802 (1985). doi: 10.1109/TC.1985.1676635 CrossRefGoogle Scholar
  33. 33.
    Min-Shiang, H.: A cryptographic key assignment scheme in a hierarchy for access control. Math. Comput. Model. 26(2), 27–31 (1997). doi: 10.1016/S0895-7177(97)00120-9 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sandhu, R.S.: Cryptographic implementation of a tree hierarchy for access control. Inf. Process. Lett. 27(2), 95–98 (1988). doi: 10.1016/0020-0190(88)90099-3 CrossRefGoogle Scholar
  35. 35.
    Shen, V.R.L., Chen, T.: A novel key management scheme based on discrete logarithms and polynomial interpolations. Comput. Secur. 21(2), 164–171 (2002). doi: 10.1016/S0167-4048(02)00211-0 CrossRefGoogle Scholar
  36. 36.
    Tang, Q., Mitchell, C.J.: Comments on a cryptographic key assignment scheme. Comput. Stan. Interfaces 27(3), 323–326 (2005). doi: 10.1016/j.csi.2004.07.001 CrossRefGoogle Scholar
  37. 37.
    Tzeng, W.: A time-bound cryptographic key assignment scheme for access control in a hierarchy. IEEE Trans. Knowl. Data Eng. 14(1), 182–188 (2002). doi: 10.1109/69.979981 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Tzeng, W.: A secure system for data access based on anonymous authentication and time-dependent hierarchical keys. In: Lin, F., Lee, D., Lin, B.P., Shieh, S., Jajodia, S. (eds.) Proceedings of the 2006 ACM Symposium on Information, Computer and Communications Security, ASIACCS 2006, Taipei,Taiwan, 21–24 March 2006, pp. 223–230. ACM (2006). http://doi.acm.org/10.1145/1128817.1128851
  39. 39.
    Wang, S., Laih, C.: Merging: an efficient solution for a time-bound hierarchical key assignment scheme. IEEE Trans. Dependable Sec. Comput. 3(1), 91–100 (2006). doi: 10.1109/TDSC.2006.15 CrossRefGoogle Scholar
  40. 40.
    Wu, T., Chang, C.: Cryptographic key assignment scheme for hierarchical access control. Comput. Syst. Sci. Eng. 16(1), 25–28 (2001)Google Scholar
  41. 41.
    Yeh, J., Chow, R., Newman, R.: A key assignment for enforcing access control policy exceptions. In: Proceedings of the International Symposium on Internet Technology, pp. 54–59 (1998)Google Scholar
  42. 42.
    Yeh, J.: An RSA-based time-bound hierarchical key assignment scheme for electronic article subscription. In: Herzog, O., Schek, H., Fuhr, N., Chowdhury, A., Teiken, W. (eds.) Proceedings of the 2005 ACM CIKM International Conference on Information and Knowledge Management, Bremen,Germany, 31 October–5 November 2005, pp. 285–286. ACM (2005). http://doi.acm.org/10.1145/1099554.1099629
  43. 43.
    Yi, X.: Security of chien’s efficient time-bound hierarchical key assignment scheme. IEEE Trans. Knowl. Data Eng. 17(9), 1298–1299 (2005). doi: 10.1109/TKDE.2005.152 CrossRefGoogle Scholar
  44. 44.
    Yi, X., Ye, Y.: Security of tzeng’s time-bound key assignment scheme for access control in a hierarchy. IEEE Trans. Knowl. Data Eng. 15(4), 1054–1055 (2003). doi: 10.1109/TKDE.2003.1209023 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arcangelo Castiglione
    • 1
  • Alfredo De Santis
    • 1
  • Barbara Masucci
    • 1
  • Francesco Palmieri
    • 1
  • Aniello Castiglione
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of SalernoFiscianoItaly

Personalised recommendations