Authenticated Encryption with Small Stretch (or, How to Accelerate AERO)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9723)

Abstract

Standard form of authenticated encryption (AE) requires the ciphertext to be expanded by the nonce and the authentication tag. These expansions can be problematic when messages are relatively short and communication cost is high. To overcome the problem we propose a new form of AE scheme, \( \textsf {MiniAE} \), which expands the ciphertext only by the single variable integrating nonce and tag. An important feature of \( \textsf {MiniAE} \) is that it requires the receiver to be stateful not only for detecting replays but also for detecting forgery of any type. McGrew and Foley already proposed a scheme having this feature, called AERO, however, there is no formal security guarantee based on the provable security framework.

We provide a provable security analysis for \( \textsf {MiniAE} \), and show several provably-secure schemes using standard symmetric crypto primitives. This covers a generalization of AERO, hence our results imply a provable security of AERO. Moreover, one of our schemes has a similar structure as OCB mode of operation and enables rate-1 operation, i.e. only one blockcipher call to process one input block. This implies that the computation cost of \( \textsf {MiniAE} \) can be as small as encryption-only schemes.

Keywords

Authenticated encryption Stateful decryption Provable security AERO OCB 

References

  1. 1.
    Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality. NIST Special Publication 800-38C (2004)Google Scholar
  2. 2.
    Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special, Publication 800-38D (2007)Google Scholar
  3. 3.
    McGrew, D.: Low power wireless scenarios and techniques for saving bandwidth without sacrificing security. In: NIST Lightweight Cryptography Workshop 2015 (2015)Google Scholar
  4. 4.
    Struik, R.: Revisiting design criteria for AEAD ciphers targeting highly constrained networks. DIAC: Directions in Authenticated Ciphers (2013). http://2013.diac.cr.yp.to/
  5. 5.
    Seys, S., Preneel, B.: Power consumption evaluation of efficient digital signature schemes for low power devices. In: WiMob, vol. 1, pp. 79–86. IEEE (2005)Google Scholar
  6. 6.
    Singelée, D., Seys, S., Batina, L., Verbauwhede, I.: The communication and computation cost of wireless security: extended abstract. In: WISEC, pp. 1–4. ACM (2011)Google Scholar
  7. 7.
    de Meulenaer, G., Gosset, F., Standaert, F., Pereira, O.: On the energy cost of communication and cryptography in wireless sensor networks. In: WiMob, pp. 580–585. IEEE Computer Society (2008)Google Scholar
  8. 8.
    McGrew, D., Foley, J.: Authenticated Encryption with Replay prOtection (AERO). Internet-Draft (2013)Google Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode of operation. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 311–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH authenticated encryption scheme: a case study of the Encode-then-Encrypt-and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)CrossRefGoogle Scholar
  15. 15.
    Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Schroeppel, R.: Hasty Pudding Cipher. AES Submission (1998). http://www.cs.arizona.edu/rcs/hpc/
  19. 19.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Skein Hash Function. SHA-3 Submission (2008). http://www.skein-hash.info/
  20. 20.
    Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Jr., M.A.S., de Oliveira, B.T., Barreto, P.S.L.M., Margi, C.B., Carvalho, T.C.M.B., Näslund, M. : Comparison of authenticated-encryption schemes in wireless sensor networks. In: LCN, pp. 450–457. IEEE Computer Society (2011)Google Scholar
  26. 26.
    Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015)Google Scholar
  31. 31.
    Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  34. 34.
    Iwata, T., Yasuda, K.: HBS: a single-key mode of operation for deterministic authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 394–415. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Iwata, T., Yasuda, K.: BTM: a single-key, inverse-cipher-free mode for deterministic authenticated encryption. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Desai, A.: New paradigms for constructing symmetric encryption schemes secure against chosen-ciphertext attack. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 394–412. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society (1997)Google Scholar
  38. 38.
    Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsidered. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 385–407. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.NEC CorporationKawasakiJapan

Personalised recommendations