Predictive Channel Selection for over-the-Air Video Transmission Using Software-Defined Radio Platforms

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 172)

Abstract

This paper demonstrates a predictive channel selection method by implementing it in software-defined radio (SDR) platforms and measuring the performance using over-the-air video transmissions. The method uses both long term and short term history information in selecting the best channel for data transmission. Controlled interference is generated in the used channels and the proposed method is compared to reference methods. The achieved results show that the predictive method is a practical one, able to increase the throughput and reduce number of collisions and channel switches by using history information intelligently.

Keywords

Cognitive radio Spectrum databases Dynamic spectrum access 

References

  1. 1.
    Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Area Comm. 23, 201–220 (2005)CrossRefGoogle Scholar
  2. 2.
    Clancy, T.C., Walker, B.D.: Predictive dynamic spectrum access. In: SDR Forum Technical Conference, Orlando (2006)Google Scholar
  3. 3.
    López-Benitez, M., Casadevall, F.: An overview of spectrum occupancy models for cognitive radio networks. In: Casares-Giner, V., Manzoni, P., Pont, A. (eds.) Networking Workshops 2011. LNCS, vol. 6827, pp. 32–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Gabran, W., Liu, C.H., Pawelczak, P., Cabric, D.: Primary user traffic estimation for dynamic spectrum access. IEEE J. Sel. Area Comm. 31, 544–558 (2013)CrossRefGoogle Scholar
  5. 5.
    Höyhtyä, M., Pollin, S., Mämmelä, A.: Improving the performance of cognitive radios through classification, learning, and predictive channel selection. Adv. Electron. Telecommun. 2, 28–38 (2011)Google Scholar
  6. 6.
    Kahraman, B., Buzluka, F.: A novel channel handover strategy to improve the throughput in cognitive radio networks. In: International Wireless Communications and Mobile Computing Conference, pp. 107–112 (2011)Google Scholar
  7. 7.
    Zhang, C., Shin, K.G.: What should secondary users do upon incumbents return? IEEE J. Sel. Area Comm. 31, 417–428 (2013)CrossRefGoogle Scholar
  8. 8.
    Shokri-Ghadikolaei, H., Fischione, C.: Analysis and optimization of random sensing order in cognitive radio networks. IEEE J. Sel. Area Comm. 33, 803–819 (2015)CrossRefGoogle Scholar
  9. 9.
    Höyhtyä, M., Vartiainen, J., Sarvanko, H., Mämmelä, A.: Combination of short term and long term database for cognitive radio resource management. In: 3rd International Symposium on Applied Sciences and Communication Technologies, Rome (2010)Google Scholar
  10. 10.
    Höyhtyä, M., Sarvanko, H., Vartiainen, J.: Method and device for selecting one or more resources for use from among a set of resources. U. S. Pat. Appl. US20130203427 A1 (2013)Google Scholar
  11. 11.
    Jing, X., Mau, S.-C., Raychaudri, D., Matyas, R.: Reactive cognitive algorithms for co-existence between 802.11b and 802.16a networks. In: IEEE Global Telecommunications Conference, St. Louis, pp. 2465–2649 (2005)Google Scholar
  12. 12.
    Feng, S., Zhao, D.: Supporting real-time CBR traffic in a cognitive radio sensor network. In: IEEE Wireless Communications and Networking Conference, Sydney, (2010)Google Scholar
  13. 13.
    Ettus Research. http://www.ettus.com/
  14. 14.
    National Instruments. http://www.ni.com/
  15. 15.
    Paaso, H., Mämmelä, A., Patron, D., Dandekar, K.R.: DoA estimation through modified unitary MUSIC algorithm for CRLH leaky-wave antennas. In: 24th International Symposium on Personal Indoor and Mobile Radio Communications, London, pp. 311–315 (2013)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

Authors and Affiliations

  1. 1.VTT Technical Research Centre of Finland Ltd.OuluFinland

Personalised recommendations