Topographic Surface Perception Modulated by Pitch Rotation of Motion Chair

  • Tomohiro AmemiyaEmail author
  • Koichi Hirota
  • Yasushi Ikei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9734)


The paper investigates multimodal perception of a topographic surface induced by visual and vestibular stimuli. Using an experimental system consisting of a motion chair and optic flow on a wide screen, we conducted a user study to assess how congruence or incongruence of visual and vestibular shape cues influence the perception of a topographic surface. Experimental results show that the vestibular shape cue contributed to making the shape perception larger than the visual one. Finally, the results of a linear regression analysis showed that performance with visual unimodal and vestibular unimodal cues could account for that with visuo-vestibular multimodal cues.


Vestibular sensation Self-motion Multisensory Motion platform 



The work was supported by the National Institute of Information and Communications Technology (NICT) of Japan.


  1. 1.
    Ikei, Y., Abe, K., Hirota, K., Amemiya, T.: A multisensory VR system exploring the ultra-reality. In: Proceedings of the 18th International Conference on Virtual Systems and Multimedia (VSMM). IEEE (2012)Google Scholar
  2. 2.
    Ikei, Y., Shimabukuro, S., Kato, S., Komase, K., Okuya, Y., Hirota, K., Kitazaki, M., Amemiya, T.: Five senses theatre project: sharing experiences through bodily ultra-reality. In: Proceedings of the IEEE Virtual Reality 2015, pp. 195–196 (2015)Google Scholar
  3. 3.
    Huang, C.-H., Yen, J.-Y., Ouhyoung, M.: The design of a low cost motion chair for video games and MPEG video playback. IEEE Trans. Consum. Electron. 42(4), 991–997 (1996)CrossRefGoogle Scholar
  4. 4.
    Maeda, T., Ando, H., Amemiya, T., Nagaya, N., Sugimoto, M., Inami, M.: Shaking the world: galvanic vestibular stimulation as a novel sensation interface. In: Proceedings of the SIGGRAPH Emerging Technologies, p. 17 (2005)Google Scholar
  5. 5.
    Riecke, B.E., Schulte-Pelkum, J., Caniard, F., Bulthoff, H.H.: Towards lean and elegant self-motion simulation in virtual reality. In: Proceedings of the IEEE Virtual Reality Conference, pp. 131–138 (2005)Google Scholar
  6. 6.
    Riecke, B.E., Väljamäe, A., Schulte-Pelkum, J.: Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans. Appl. Percept. 6(2), 7:1–7:27 (2009)CrossRefGoogle Scholar
  7. 7.
    Amemiya, T., Hirota, K., Ikei, Y.: Perceived forward velocity increases with tactile flow on seat pan. In: Proceedings of the IEEE Virtual Reality Conference, pp. 141–142. IEEE Computer Society, Los Alamitos (2013)Google Scholar
  8. 8.
    Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845), 445–448 (2001)CrossRefGoogle Scholar
  9. 9.
    Lentz, J.M., Collins, W.E.: Motion sickness susceptibility and related behavioral characteristics in men and women. Aviat. Space Environ. Med. 48(4), 316–322 (1977)Google Scholar
  10. 10.
    Brainard, D.H.: The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)CrossRefGoogle Scholar
  11. 11.
    Guedry, F.E.: Psychophysics of vestibular sensation. In: Kornhuber, H.H. (ed.) Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations. Handbook of Sensory Physiology, vol. VI, pp. 316–322. Springer, Heidelberg (1974)Google Scholar
  12. 12.
    Reason, J.T., Brand, J.J.: Motion Sickness. Academic Press, London (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.NTT Communication Science LaboratoriesAtsugiJapan
  2. 2.Graduate School of Information SystemsThe University of Electro-CommunicationsChofuJapan
  3. 3.Graduate School of System DesignTokyo Metropolitan UniversityHino-shiJapan

Personalised recommendations