Advertisement

Towards a Visual Data Language to Improve Insights into Complex Multidimensional Data

  • Jan Wojdziak
  • Bettina Kirchner
  • Dietrich Kammer
  • Martin Herrmann
  • Rainer Groh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9734)

Abstract

Data volume is increasing steadily. Visualization helps to handle not only the volume, but the ever increasing diversity of data. Visualization gives answers faster and reveals information that would go unnoticed and therefore unused in decision making. The challenge we address in this contribution is how visualizations can be created semi-automatic without taking the individual human-centered view of the designer on an interface out of the loop. In this paper, we present a tool-supported design process to develop aesthetic and interactive data visualizations in a conceptual, guided, effective way.

Keywords

Information design Process model Information visualization Aesthetics Tool-support design 

References

  1. 1.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25, 12–16 (2005)CrossRefGoogle Scholar
  2. 2.
    Heer, J., Agrawala, M.: Software design patterns for information visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 853–860 (2006) doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.178 CrossRefGoogle Scholar
  3. 3.
    Yi, J.S., Youn, K., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph., 13, pp. 1224–1231 (2007) doi: 10.1109/TVCG.2007.70515
  4. 4.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of IEEE Symposium on Visual Language, pp. 336–343. IEEE Computer Society Press (1996)Google Scholar
  5. 5.
    Borchers, J.O.: Interaction design patterns: twelve theses, pp. 1–6. Workshop Pattern Lang. Interact. Des. ACM Press, Hague, Netherlands (2000)Google Scholar
  6. 6.
    Lau, A., Vande Moere, A.: Towards a model of information aesthetics in information visualization. In: 11th International Conference on Information Visualization 2007 IV07, pp. 87–92. IEEE (2007)Google Scholar
  7. 7.
    Lang, A.: Aesthetics in information visualization. Trends Information Visualization, 8 (2009)Google Scholar
  8. 8.
    Kosara, R.: Visualization criticism-the missing link between information visualization and art. In: 11th International Conference on Information Visualization 2007 IV07, pp. 631–636. IEEE (2007)Google Scholar
  9. 9.
    Fry, B.J.: Computational information design. Massachusetts Institute of Technology (2004)Google Scholar
  10. 10.
    Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15, 921–928 (2009)CrossRefGoogle Scholar
  11. 11.
    Satyanarayan, A., Wongsuphasawat, K., Heer, J.: Declarative interaction design for data visualization. In: Proceedings of 27th Annual ACM Symposium User Interface Software Technology, pp. 669–678. ACM (2014)Google Scholar
  12. 12.
    García, M., Harmsen, B.: Qlikview 11 for Developers. Packt Publishing Ltd, Birmingham (2012)Google Scholar
  13. 13.
    Fry, B.: Visualizing Data, 1st edn. O’Reilly Media, Sebastopol (2008)Google Scholar
  14. 14.
    Keck, M., Kammer, D., Iwan, R., et al.: DelViz: exploration of tagged information visualizations. In: Interaktion und Visualisierung im Daten-Web (2011)Google Scholar
  15. 15.
    Ware, C.: Information Visualization. Perception for Design, 2. Auflage. Elsevier Ltd, Amsterdam (2004)Google Scholar
  16. 16.
    de Almeida Madeira Clemente, M., Keck, M., Groh, R.: TagStar: a glyph-based interface for indexing and visual analysis. In: Proceedings of 2014 International Working Conference on Advanced Visual Interfaces, pp. 357–358. ACM (2014)Google Scholar
  17. 17.
    North, C.L., Shneiderman, B.: A Taxonomy of Multiple Window Coordinations. Department of Computer Science, University of Maryland, USA (1997)Google Scholar
  18. 18.
    Shneiderman, B.: Designing the User Interface. Strategies for Effective Human-Computer Interaction, 4th edn. Addison-Wesley, Boston (2004)Google Scholar
  19. 19.
    Tidwell, J.: Interaction design patterns. In: Conference on Pattern Language Programming (1998)Google Scholar
  20. 20.
    Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Queue 10, 30 (2012)CrossRefGoogle Scholar
  21. 21.
    Spotfire. http://spotfire.tibco.com/de/. Accessed 12 Feb 2016
  22. 22.
  23. 23.
    Bostock, M., Ogievetsky, V., Heer, J.: D3: Data-Driven Documents. IEEE Trans. Vis. Comp. Graph. Proc. InfoVis 17, 2301–2309 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jan Wojdziak
    • 1
  • Bettina Kirchner
    • 1
  • Dietrich Kammer
    • 1
  • Martin Herrmann
    • 1
  • Rainer Groh
    • 2
  1. 1.Gesellschaft für Technische VisualistikDresdenGermany
  2. 2.Technische Universität DresdenDresdenGermany

Personalised recommendations