Ergonomic Considerations for the Design and the Evaluation of Uncertain Data Visualizations

  • Sabine TheisEmail author
  • Christina Bröhl
  • Matthias Wille
  • Peter Rasche
  • Alexander Mertens
  • Emma Beauxis-Aussalet
  • Lynda Hardman
  • Christopher M. Schlick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9734)


Uncertainty impacts many crucial issues the world is facing today – from climate change prediction, to scientific modelling, to the interpretation of medical data. Decisions typically rely on data which can be aggregated from different sources and further transformed using a variety of algorithms and models. Such data processing pipelines involve different types of uncertainty. As visual data representations are able to mediate between human cognition and computational models, a trustworthy conveyance of data characteristics requires effective representations of uncertainty which take productivity and cognitive abilities, as important human factors, into account. We summarize findings resulting from prior work on interactive uncertainty visualizations. Subsequently, an evaluation study is presented which investigates the effect of different visualizations of uncertain data on users’ efficiency (time, error rate) and subjectively perceived cognitive load. A table, a static graphic, and an interactive graphic containing uncertain data were compared. The results of an online study (N = 146) showed a significant difference in the task completion time between the visualization type, while there are no significant differences in error rate. A non-parametric K-W test found a significant difference in subjective cognitive load [H (2) = 7.39, p < 0.05]. Subjectively perceived cognitive load was lower for static and interactive graphs than for the numerical table. Given that the shortest task completion time was produced by a static graphic representation, we recommend this for use cases in which uncertain data are to be used time-efficiently.


Visualization Uncertainty Ergonomics Efficiency Cognitive load 



This publication is part of the research project “TECH4AGE”, funded by the German Federal Ministry of Education and Research (BMBF, Grant No. 16SV7111) supervised by the VDI/VDE Innovation + Technik GmbH.


  1. 1.
    Griethe, H., Schumann, H.: The visualization of uncertain data: methods and problems. In: Proceedings of Simulation and Visualization, Magdeburg (2006)Google Scholar
  2. 2.
    Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13, 370–390 (1997)CrossRefGoogle Scholar
  3. 3.
    Skeels, M., Lee, B., Smith, G., Robertson, G.G.: Revealing uncertainty for information visualization. Inf. Vis. 9(1), 70–81 (2010)CrossRefGoogle Scholar
  4. 4.
    Bigelow, A., Drucker, S., Fisher, D., Meyer, M.: Reflections on how designers design with data. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, pp. 17–24. ACM, May 2014Google Scholar
  5. 5.
    Chen, C.: Top 10 unsolved information visualization problems. IEEE Comput. Graph. Appl. 25(4), 12–16 (2005)CrossRefGoogle Scholar
  6. 6.
    Beauxis-Aussalet, E., Arslanova, E., Hardman, L., van Ossenbruggen, J.: A case study of trust issues in scientific video collections. In: Proceedings of the 2nd ACM International Workshop on Multimedia Analysis for Ecological Data (2013)Google Scholar
  7. 7.
    Beauxis-Aussalet, E., Arslanova, E., Hardman, L.: Supporting non-experts’ awareness of uncertainty: negative effects of simple visualizations in multiple views. In: Proceedings of the European Conference on Cognitive Ergonomics 2015, p. 20. ACM, Warsaw (2015)Google Scholar
  8. 8.
    Beauxis-Aussalet, E., Hardman, L.: Simplifying the visualization of confusion matrix. In: BNAIC, November 2014Google Scholar
  9. 9.
    Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)Google Scholar
  10. 10.
    Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994)CrossRefGoogle Scholar
  11. 11.
    Anderson, E.W., Potter, K.C., Matzen, L.E., Shepherd, J.F., Preston, G.A., Silva, C.T.: A User study of visualization effectiveness using EEG and cognitive load. Comput. Graph. Forum 30, 791–800 (2011). Blackwell Publishing Ltd.Google Scholar
  12. 12.
    Huang, W., Eades, P., Hong, S.-H.: Measuring effectiveness of graph visualizations: a cognitive load perspective. doi: 10.1057/ivs.2009.10
  13. 13.
    Rogers, Y., Sharp, J., Preece, J.: Interaction Design: Beyond Human-Computer Interaction. Wiley, Hoboken (2011)Google Scholar
  14. 14.
    Nielsen, J.: The usability engineering life cycle. Computer 25(3), 12–22 (1992)CrossRefGoogle Scholar
  15. 15.
    Tory, M., Möller, T.: Human factors in visualization research. IEEE Trans. Vis. Comput. Graph. 10, 72–84 (2004)CrossRefGoogle Scholar
  16. 16.
    Badam, S.K., Fisher, E., Elmqvist, N.: Munin: a peer-to-peer middleware for ubiquitous analytics and visualization spaces. IEEE Trans. Vis. Comput. Graphi. XX(c), 1 (2014)Google Scholar
  17. 17.
    Kang, H., Shneiderman, B.: Visualization methods for personal photo collections: browsing and searching in the PhotoFinder. In: ICME 2000, 2000 IEEE International Conference on Multimedia and Expo, vol. 3, pp. 3:1539–3:1542 (2000)Google Scholar
  18. 18.
    Mullër, W., Schumann, H.: Visualization methods for time-dependent data-an overview. In: Proceedings of the 2003 Winter Simulation Conference, pp. 1:737–1:745. IEEE (2003)Google Scholar
  19. 19.
    Purchase, H.C., Andrienko, N., Jankun-Kelly, T.J., Ward, M.: Theoretical foundations of information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 46–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Wilkinson, L.: The Grammar of Graphics. Springer Science & Business Media, Berlin (2006)Google Scholar
  21. 21.
    KNMI, KNMI Verwachtingen, cited 13 July 2011.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sabine Theis
    • 1
    Email author
  • Christina Bröhl
    • 1
  • Matthias Wille
    • 1
  • Peter Rasche
    • 1
  • Alexander Mertens
    • 1
  • Emma Beauxis-Aussalet
    • 2
  • Lynda Hardman
    • 2
  • Christopher M. Schlick
    • 1
  1. 1.Institute of Industrial Engineering and ErgonomicsRWTH Aachen UniversityAachenGermany
  2. 2.Centrum voor Wiskunde en Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations