Heterogeneity of Histaminergic Neurons

  • Patrizia GiannoniEmail author
Part of the The Receptors book series (REC, volume 28)


The central histaminergic system has a complex neuroanatomical and functional organisation. It originates in a small area of the posterior hypothalamus, the tuberomammillary nucleus (TMN). Despite the restricted location of cell bodies, anatomical studies showed that histamine neurons project to almost the entire brain. Indeed, neuronal histamine (HA) has been proven to modulate a plethora of body functions. The TMN was initially considered a single functional entity with neurons working in a coordinated and synchronous way. Recently though, several works are indicating that histaminergic neurons are organised in heterogeneous populations with distinct roles. Accumulating evidence based on multiple techniques suggests different properties among histamine TMN neurons. Although further studies are needed to fully characterise the organisation of the central histaminergic system and its activation following specific stimuli, interesting observations are emerging on the selective activity of clusters of histaminergic neurons according to the homeostatic or behavioural status. The heterogeneity of histamine neurons might represent the key for a fine-tuned modulation of specific functions regulated by neuronal HA. With the present chapter, we analyse the main findings and discuss future directions.


Neuronal histamine Tuberomammillary nucleus (TMN) Heterogeneity Projection areas Stressors Stoichiometry 


  1. 1.
    Yamatodani A, Maeyama K, Watanabe T, Wada H, Kitamura Y. Tissue distribution of histamine in a mutant mouse deficient in mast cells: clear evidence for the presence of non-mast-cell histamine. Biochem Pharmacol. 1982;31(3):305–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Sei H, et al. Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS One. 2013;8(10), e78434.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Watanabe T, Watanabe Y, Tani N, Miwa T, Watanabe K. Method for detection of antibody against low molecular weight antigen (hapten)—production and detection of antibody against histamine H2 receptor of antibody against histamine H2 receptor antagonist “Famotidine”. Tokai J Exp Clin Med. 1983;8(4):307–15.PubMedGoogle Scholar
  4. 4.
    Green JP, Prell GD, Khandelwal JK, Blandina P. Aspects of histamine metabolism. Agents Actions. 1987;22(1–2):1–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Panula P, Yang HY, Costa E. Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A. 1984;81(8):2572–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Inagaki N, Panula P, Yamatodani A, Wada H. Organization of the histaminergic system in the brain of the turtle Chinemys reevesii. J Comp Neurol. 1990;297(1):132–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Ericson H, Watanabe T, Kohler C. Morphological analysis of the tuberomammillary nucleus in the rat brain: delineation of subgroups with antibody against L-histidine decarboxylase as a marker. J Comp Neurol. 1987;263(1):1–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Kohler C, Swanson LW, Haglund L, Wu JY. The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience. 1985;16(1):85–110.CrossRefPubMedGoogle Scholar
  9. 9.
    Staines WA, Daddona PE, Nagy JI. The organization and hypothalamic projections of the tuberomammillary nucleus in the rat: an immunohistochemical study of adenosine deaminase-positive neurons and fibers. Neuroscience. 1987;23(2):571–96.CrossRefPubMedGoogle Scholar
  10. 10.
    Moriwaki C, Chiba S, Wei H, Aosa T, Kitamura H, Ina K, et al. Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. J Chem Neuroanat. 2015;68:1–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee SB, Chang BJ, Lee HS. Organization of histamine-immunoreactive, tuberomammillary neurons projecting to the dorsal tier of the substantia nigra compacta in the rat. Brain Res. 2008;1203:79–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Barroso CFM, Fasolo A, Panula P. Organization of histamine-containing neurons in the brain of the crested newt, Triturus carnifex. Cell Tissue Res. 1993;272(1):147–54.CrossRefGoogle Scholar
  13. 13.
    Inagaki N, Panula P, Yamatodani A, Wada H. Organization of the histaminergic system in the brain of the teleost, Trachurus trachurus. J Comp Neurol. 1991;310(1):94–102.CrossRefPubMedGoogle Scholar
  14. 14.
    Airaksinen MS, Paetau A, Paljarvi L, Reinikainen K, Riekkinen P, Suomalainen R, et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains. Neuroscience. 1991;44(2):465–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Panula P, Karlstedt K, Sallmen T, Peitsaro N, Kaslin J, Michelsen KA, et al. The histaminergic system in the brain: structural characteristics and changes in hibernation. J Chem Neuroanat. 2000;18(1–2):65–74.CrossRefPubMedGoogle Scholar
  16. 16.
    Wada H, Inagaki N, Yamatodani A, Watanabe T. Is the histaminergic neuron system a regulatory center for whole-brain activity? Trends Neurosci. 1991;14(9):415–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci. 2011;68(15):2499–512.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin JS, Hou Y, Sakai K, Jouvet M. Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci. 1996;16(4):1523–37.PubMedGoogle Scholar
  19. 19.
    Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y, Zhang Z, et al. Wakefulness is governed by GABA and histamine cotransmission. Neuron. 2015;87(1):164–78.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, et al. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci. 2014;34(17):6023–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sakata T, Yoshimatsu H, Kurokawa M. Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition. 1997;13(5):403–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Tighilet B, Leonard J, Lacour M. Betahistine dihydrochloride treatment facilitates vestibular compensation in the cat. J Vestib Res. 1995;5(1):53–66.CrossRefPubMedGoogle Scholar
  23. 23.
    Provensi G, Coccurello R, Umehara H, Munari L, Giacovazzo G, Galeotti N, et al. Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc Natl Acad Sci U S A. 2014;111(31):11527–32.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Provensi G, Blandina P, Passani MB. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology. 2015.Google Scholar
  25. 25.
    Provensi G. Histamine receptors and appetite. In: editions S, editor. Histamine receptors. Springer; 2016.Google Scholar
  26. 26.
    Izquierdo F, de Carvalho. Histamine and histamine receptors in fear extinction. In: editions S, editor. Histamine receptors. 2016.Google Scholar
  27. 27.
    Benetti F, Furini CR, de Carvalho MJ, Provensi G, Passani MB, Baldi E, et al. Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proc Natl Acad Sci U S A. 2015;112(19):E2536–42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin JS, Sakai K, Jouvet M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology. 1988;27(2):111–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Sergeeva OA, Eriksson KS, Haas HL. Glycine receptor mediated responses in rat histaminergic neurons. Neurosci Lett. 2001;300(1):5–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Sergeeva OA, Eriksson KS, Sharonova IN, Vorobjev VS, Haas HL. GABA(A) receptor heterogeneity in histaminergic neurons. Eur J Neurosci. 2002;16(8):1472–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci. 1998;18(12):4705–21.PubMedGoogle Scholar
  32. 32.
    Rudolph C, Richards GE, Kaplan S, Ganong WF. Effect of intraventricular histamine on hormone secretion in dogs. Neuroendocrinology. 1979;29(3):169–77.CrossRefPubMedGoogle Scholar
  33. 33.
    Knigge U, Matzen S, Hannibal T, Jorgensen H, Warberg J. Involvement of histamine in the mediation of the stress-induced release of alpha-melanocyte-stimulating hormone in male rats. Neuroendocrinology. 1991;54(6):646–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Haxhiu MA, Tolentino-Silva F, Pete G, Kc P, Mack SO. Monoaminergic neurons, chemosensation and arousal. Respir Physiol. 2001;129(1–2):191–209.CrossRefPubMedGoogle Scholar
  35. 35.
    Miklos IH, Kovacs KJ. Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci. 2003;18(11):3069–79.CrossRefPubMedGoogle Scholar
  36. 36.
    Gaykema RP, Park SM, McKibbin CR, Goehler LE. Lipopolysaccharide suppresses activation of the tuberomammillary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways. Neuroscience. 2008;152(1):273–87.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Umehara H, Mizuguchi H, Mizukawa N, Matsumoto M, Takeda N, Senba E, et al. Innervation of histamine neurons in the caudal part of the arcuate nucleus of hypothalamus and their activation in response to food deprivation under scheduled feeding. Methods Find Exp Clin Pharmacol. 2010;32(10):733–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Umehara H, Mizuguchi H, Mizukawa N, Matsumoto M, Takeda N, Senba E, et al. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H(1) receptors in rats: potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus. Brain Res. 2011;1387:61–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Umehara H, Mizuguchi H, Fukui H. Identification of a histaminergic circuit in the caudal hypothalamus: an evidence for functional heterogeneity of histaminergic neurons. Neurochem Int. 2012;61(6):942–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Masaki T, Chiba S, Yasuda T, Noguchi H, Kakuma T, Watanabe T, et al. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes. 2004;53(9):2250–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Ookuma K, Sakata T, Fukagawa K, Yoshimatsu H, Kurokawa M, Machidori H, et al. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res. 1993;628(1–2):235–42.CrossRefPubMedGoogle Scholar
  42. 42.
    Passani MB, Giannoni P, Bucherelli C, Baldi E, Blandina P. Histamine in the brain: beyond sleep and memory. Biochem Pharmacol. 2007;73(8):1113–22.CrossRefPubMedGoogle Scholar
  43. 43.
    Cenni G, Blandina P, Mackie K, Nosi D, Formigli L, Giannoni P, et al. Differential effect of cannabinoid agonists and endocannabinoids on histamine release from distinct regions of the rat brain. Eur J Neurosci. 2006;24(6):1633–44.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Marsicano GWC, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418:530–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Kirkham TCWC, Fezza F, Di Marzo V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136(4):550–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Di Marzo VMI. Endocannabinoid control of food intake and energy balance. Nat Neurosci. 2005;8(5):585–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Knox D, Berntson GG. Cortical modulation by nucleus basalis magnocellularis corticopetal cholinergic neurons during anxiety-like states is reflected by decreases in delta. Brain Res. 2008;1227:142–52.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wenk H, Bigl V, Meyer U. Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res. 1980;2(3):295–316.CrossRefPubMedGoogle Scholar
  49. 49.
    Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P. Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci. 2001;13(1):68–78.PubMedGoogle Scholar
  50. 50.
    Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM. It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci. 2003;26(4):184–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Warburton EC, Brown MW. Neural circuitry for rat recognition memory. Behav Brain Res. 2015;285:131–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Giannoni P, Passani MB, Nosi D, Chazot PL, Shenton FC, Medhurst AD, et al. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur J Neurosci. 2009;29(12):2363–74.CrossRefPubMedGoogle Scholar
  53. 53.
    Giannoni P, Medhurst AD, Passani MB, Giovannini MG, Ballini C, Corte LD, et al. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridine carboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J Pharmacol Exp Ther. 2010;332(1):164–72.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4(2):121–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Munari L, Provensi G, Passani MB, Blandina P. Selective brain region activation by histamine H(3) receptor antagonist/inverse agonist ABT-239 enhances acetylcholine and histamine release and increases c-Fos expression. Neuropharmacology. 2013;70:131–40.CrossRefPubMedGoogle Scholar
  56. 56.
    Osorio-Espinoza A, Alatorre A, Ramos-Jimenez J, Garduno-Torres B, Garcia-Ramirez M, Querejeta E, et al. Pre-synaptic histamine H(3) receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience. 2011;176:20–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Aquino-Miranda G, Osorio-Espinoza A, Escamilla-Sanchez J, Gonzalez-Pantoja R, Ortiz J, Arias-Montano JA. Histamine H(3) receptors modulate depolarization-evoked [(3)H]-noradrenaline release from rat olfactory bulb slices. Neuropharmacology. 2012;62(2):1127–33.CrossRefPubMedGoogle Scholar
  58. 58.
    Threlfell S, Cragg SJ, Kallo I, Turi GF, Coen CW, Greenfield SA. Histamine H3 receptors inhibit serotonin release in substantia nigra pars reticulata. J Neurosci. 2004;24(40):8704–10.CrossRefPubMedGoogle Scholar
  59. 59.
    Passani MB, Blandina P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol Sci. 2011;32(4):242–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Dauvilliers Y, Bassetti C, Lammers GJ, Arnulf I, Mayer G, Rodenbeck A, et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial. Lancet Neurol. 2013;12(11):1068–75.CrossRefPubMedGoogle Scholar
  61. 61.
  62. 62.
    Blandina P, Munari L, Provensi G, Passani MB. Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci. 2012;6:33.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    De Luca R, Suvorava T, Yang D, Baumgartel W, Kojda G, Haas HL, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2015.Google Scholar
  64. 64.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A. 2002;99(12):8400–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kukko-Lukjanov TK, Panula P. Subcellular distribution of histamine, GABA and galanin in tuberomamillary neurons in vitro. J Chem Neuroanat. 2003;25(4):279–92.CrossRefPubMedGoogle Scholar
  66. 66.
    Passani MB, Lin JS, Hancock A, Crochet S, Blandina P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci. 2004;25(12):618–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of NeuroscienceInstitute of Functional Genomics, CNRS-University of Montpellier (UMR 5203) 34094Montpellier, Cedex 5France

Personalised recommendations