Advertisement

Authoring WCAG2.0-Compliant Texts for the Web Through Text Readability Visualization

  • Evelyn EikaEmail author
  • Frode Eika Sandnes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9737)

Abstract

Texts on the web need to be readable in order to be accessible to a wide audience. WCAG2.0 states that tests should not exceed the reading level of upper secondary education. Several readability measures have been proposed over the last century. However, these measures give an accumulated measure of the text and do not help pinpoint specific problems in the text. This paper proposes a text visualization approach that emphasizes readability issues in texts. The texts are visualized in the textual domain. The intention of the visualization approach is to draw the attention of the author towards the aspects of the text that potentially are hard to read, allowing the author to revise the text and consequently making the text more readable.

Keywords

WCAG2.0 Readability Visualization Universal design Cognitive disability Dyslexia 

References

  1. 1.
    World Wide Web Consortium, Web content accessibility guidelines (WCAG) 2.0 (2008)Google Scholar
  2. 2.
    Sandnes, F.E., Zhao, A.Q.: An interactive color picker that ensures WCAG2.0 compliant color contrast levels. Procedia Comput. Sci. 67, 87–94 (2015)CrossRefGoogle Scholar
  3. 3.
    Sandnes, F.E., Zhao, A.Q.: A contrast colour selection scheme for WCAG2. 0-compliant web designs based on HSV-half-planes. In: Proceedings of System, Man and Cybernetics Conference SMC2015, pp. 1233–1237. IEEE (2015)Google Scholar
  4. 4.
    Hart-Davidson, W., Spinuzzi, C., Zachry, M.: Visualizing writing activity as knowledge work: challenges & opportunities. In: Proceedings of the 24th annual ACM international conference on Design of communication, pp. 70–77. ACM (2006)Google Scholar
  5. 5.
    DeRose, S.J., Durand, D.G., Mylonas, E., Renear, A.H.: What is text, really? ACM SIGDOC Asterisk J. Comput. Documentation 21, 1–24 (1997)CrossRefGoogle Scholar
  6. 6.
    Lamport, L.: Latex. Addison-wesley, Reading (1994)zbMATHGoogle Scholar
  7. 7.
    Janan, D., Wray, D.: Reassessing the accuracy and use of readability formulae. Malays. J. Learn. Instruction 11, 127–145 (2014)Google Scholar
  8. 8.
    Pitler, E., Nenkova, A.: Revisiting readability: a unified framework for predicting text quality. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 186–195. ACL (2008)Google Scholar
  9. 9.
    McLaughlin, G.H.: SMOG grading: a new readability formula. J. Read. 12, 639–646 (1969)Google Scholar
  10. 10.
    Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information‐searching behavior? The case of Google. J. Assoc. Inf. Sci. Technol. (2015). http://onlinelibrary.wiley.com/doi/10.1002/asi.23572/abstract
  11. 11.
    Fry, E.B.: Text readability versus leveling. Read. Teacher 56, 286–292 (2002)Google Scholar
  12. 12.
    Jing, H.Y.: Sentence reduction for automatic text summarization. In: Proceedings of the Sixth Conference on Applied Natural Language Processing, pp. 310–315. ACL (2000)Google Scholar
  13. 13.
    Chandrasekar, R., Srinivas, B.: Automatic induction of rules for text simplification. Knowl.-Based Syst. 10, 183–190 (1997)CrossRefGoogle Scholar
  14. 14.
    Chandrasekar, R., Doran, C., Srinivas, B.: Motivations and methods for text simplification. In: Proceedings of the 16th Conference on Computational Linguistics, pp. 1041–1044. ACL (1996)Google Scholar
  15. 15.
    Saggion, H., Martínez, E.G., Etayo, E., Anula, A., Bourg, L.: Text simplification in simplext. making text more accessible. Procesamiento del Lenguaje Natural 47, 341–342 (2011)Google Scholar
  16. 16.
    Wise, J., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of Information Visualization, pp. 51–58. IEEE (1995)Google Scholar
  17. 17.
    Rohrer, R.M., Ebert, D.S., Sibert, J.L.: The shape of Shakespeare: visualizing text using implicit surfaces. In: Proceedings of IEEE Symposium on Information Visualization, pp. 121–129. IEEE (1998)Google Scholar
  18. 18.
    Booker, A., Condliff, M., Greaves, M., Holt, F.B., Kao, A., Pierce, D.J., Poteet, S., Wu, Y.J.J.: Visualizing text data sets. Comput. Sci. Eng. 1, 26–35 (1999)CrossRefGoogle Scholar
  19. 19.
    Eler, D.M., Paulovich, F.V., Oliveira, M., Minghim, R.: Coordinated and multiple views for visualizing text collections. In: 12th International Conference on Information Visualisation, pp. 246–251. IEEE (2008)Google Scholar
  20. 20.
    Henderson, J., Merlo, P., Petroff, I., Schneider, G.: Using syntactic analysis to increase efficiency in visualizing text collections. In: Proceedings of the 19th International Conference on Computational Linguistics, pp. 1–7. ACL (2002)Google Scholar
  21. 21.
    Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds. In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, p. 193. ACM (2008)Google Scholar
  22. 22.
    Lee, B., Riche, N.H., Karlson, A.K., Carpendale, S.: Sparkclouds: visualizing trends in tag clouds. IEEE Trans. Visual Comput. Graphics 16, 1182–1189 (2010)CrossRefGoogle Scholar
  23. 23.
    Van Ham, F., Wattenberg, M., Viégas, F.B.: Mapping text with phrase nets. IEEE Trans. Visual Comput. Graphics 15, 1169–1176 (2009)CrossRefGoogle Scholar
  24. 24.
    Wattenberg, M., Viégas, F.B.: The word tree, an interactive visual concordance. IEEE Trans. Visual Comput. Graphics 14, 1221–1228 (2008)CrossRefGoogle Scholar
  25. 25.
    Chung, J.W., Min, H.J. Kim, J., Park, J.C.: Enhancing readability of web documents by text augmentation for deaf people. In: Proceedings of the 3rd International Conference on Web Intelligence, Mining and Semantics, p. 30. ACM (2013)Google Scholar
  26. 26.
    Kim, H., Lee, D., Park J.W.: Textual visualization based on readability. In: SIGGRAPH Asia 2011, p. 9. ACM (2011)Google Scholar
  27. 27.
    Kim, H., Park, J.W., Seo, D.: Readability visualization for massive text data. Int. J. Multimedia Ubiquit. Eng. 9, 707–719 (2014)Google Scholar
  28. 28.
    Oelke, D., Spretke, D., Stoffel, A., Keim, D.: Visual readability analysis: how to make your writings easier to read. IEEE Trans. Visual Comput. Graphics 18, 662–674 (2012)CrossRefGoogle Scholar
  29. 29.
    Karmakar, S., Zhu, Y.: Visualizing multiple text readability indexes. In: 2010 International Conference on Education and Management Technology, pp. 133–137. IEEE (2010)Google Scholar
  30. 30.
    Liu, H., Selker, T., Lieberman, H.: Visualizing the affective structure of a text document. In: CHI 2003 extended abstracts on Human factors in computing systems, pp. 740–741. ACM (2003)Google Scholar
  31. 31.
    Karmakar, S., Zhu, Y.: Visualizing text readability. In: 2010 6th International Conference on Advanced Information Management and Service, pp. 291–296. IEEE (2010)Google Scholar
  32. 32.
    Markel, M., Vaccaro, M., Hewett, T.: Effects of paragraph length on attitudes toward technical writing. Tech. Commun. 39, 454–456 (1992)Google Scholar
  33. 33.
    Jian, H.-L., Sandnes, F.E., Law, K.M.Y., Huang, Y.-P., Huang, Y.-M.: The role of electronic pocket dictionaries as an English learning tool among Chinese students. J. Comput. Assist. Learn. 25, 503–514 (2009)CrossRefGoogle Scholar
  34. 34.
    Jian, H.-L., Sandnes, F.E., Huang, Y.-P., Cai, L., Law, K.M.Y.: On students’ strategy-preferences for managing difficult course work. IEEE Trans. Educ. 51, 157–165 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Oslo and Akershus University College of Applied SciencesOsloNorway
  2. 2.Westerdals Oslo School of Art, Communication and TechnologyOsloNorway

Personalised recommendations