Advertisement

Automatic Imagery Data Analysis for Diagnosing Human Factors in the Outage of a Nuclear Plant

  • Pingbo Tang
  • Cheng Zhang
  • Alper Yilmaz
  • Nancy Cooke
  • Ronald Laurids Boring
  • Allan Chasey
  • Timothy Vaughn
  • Samuel Jones
  • Ashish Gupta
  • Verica Buchanan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9745)

Abstract

Nuclear power plant (NPP) outages involve maintenance and repair activities of a large number of workers in limited workspaces, while having tight schedules and zero-tolerance for accidents. During an outage, thousands of workers will be working around the NPP. Extremely high outage costs and expensive delays in maintenance projects (around $1.5 million per day) require tight outage schedules (typically 20 days). In such packed workspaces, real-time human behavior monitoring is critical for ensuring safe collaboration among workers, minimal wastes of time and resources due to the lack of situational awareness, and timely project control. Current methods for detailed human behavior monitoring on construction sites rely on manual imagery data collection and analysis, which is tedious and error-prone. This paper presents a framework of automatic imagery data analysis that enables real-time detection and diagnosis of anomalous human behaviors during outages, through the integration of 4D construction simulation and object tracking algorithms.

Keywords

Human factors Computer vision Construction automation Project control Nuclear plant 

Notes

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy (DOE), Nuclear Engineering University Program (NEUP) under Award No. DE-NE0008403. DOE’s support is acknowledged. Any opinions and findings presented are those of authors and do not necessarily reflect the views of DOE.

References

  1. 1.
    St. Germain, S.W., Farris, R.K., Whaley, A.M., Medema, H.D., Gertman, D.I.: Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management. Idaho National Laboratory, Idaho Falls (2014)CrossRefGoogle Scholar
  2. 2.
    Wilson, C.: when the outage workers come to town - nuclear energy institute. In: News Arch. Nucl. Energy Inst. (2014). http://www.nei.org/News-Media/News/News-Archives/When-the-Outage-Workers-Come-to-Town. Accessed 25 Feb. 2016
  3. 3.
    Roadtechs: Nuclear outage list. In: Interact. Site Travel. Contract. (2016). https://www.roadtechs.com/nukeout.htm. Accessed 26 Feb. 2016
  4. 4.
    Wang, C., Zhang, J., Yu, H., Dai, S.: Marine nuclear power plant human error analysis and protective measures. In: Long, S., Dhillon, B.S. (eds.) Proceedings of the 14th International Conference on Man-Machine-Environment System Engineering. LNEE, vol. 318, pp. 33–42. Springer, Heidelberg (2010). http://link.springer.com/chapter/10.1007/978-3-662-44067-4_4 Google Scholar
  5. 5.
    Ray, S.J., Teizer, J.: Real-time construction worker posture analysis for ergonomics training. doi: 10.1016/j.aei.2012.02.011
  6. 6.
    Seo, J., Han, S., Lee, S., Kim, H.: Computer vision techniques for construction safety and health monitoring. Adv. Eng. Inform. 29, 239–251 (2015). doi: 10.1016/j.aei.2015.02.001 CrossRefGoogle Scholar
  7. 7.
    Carbonari, A., Giretti, A., Naticchia, B.: A proactive system for real-time safety management in construction sites. Autom. Constr. (2011)Google Scholar
  8. 8.
    Mitropoulos, P., Memarian, B.: Team Processes and Safety of Workers: Cognitive, Affective, and Behavioral Processes of Construction Crews (2012)Google Scholar
  9. 9.
    Mitropoulos, P., Namboodiri, M.: New method for measuring the safety risk of construction activities: task demand assessment. J. Constr. Eng. Manag. 137, 30–38 (2011). doi: 10.1061/(ASCE)CO.1943-7862.0000246 CrossRefGoogle Scholar
  10. 10.
    Boring, R.L., Griffith, C.D., Joe, J.C.: The Measure of human error: direct and indirect performance shaping factors. In: 2007 IEEE 8th Hum. Factors Power Plants HPRCT 13th Annual Meeting, pp. 170–176. IEEE (2007)Google Scholar
  11. 11.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using K-Shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1806–1819 (2011). doi: 10.1109/TPAMI.2011.21 CrossRefGoogle Scholar
  12. 12.
    Teizer, J., Vela, P.A.: Personnel tracking on construction sites using video cameras. Adv. Eng. Inform. 23, 452–462 (2009). doi: 10.1016/j.aei.2009.06.011 CrossRefGoogle Scholar
  13. 13.
    Turkan, Y., Asce, M., Bosché, F., Haas, C.T., Haas, R.: Toward Automated Earned Value Tracking Using 3D Imaging Tools, vol. 139, pp. 423–433 (2013). doi: 10.1061/(ASCE)CO.1943-7862.0000629
  14. 14.
    Yang, J., Arif, O., Vela, P.A., Teizer, J., Shi, Z.: Tracking multiple workers on construction sites using video cameras. Adv. Eng. Informatics. 24, 428–434 (2010). doi: 10.1016/j.aei.2010.06.008 CrossRefGoogle Scholar
  15. 15.
    Martinez, J.C., Ioannou, P.G.: General-purpose systems for effective construction simulation. J. Constr. Eng. Manage. 125(4), 265–276 (1999). http://doi.org/10.1061/(ASCE)0733-9364(1999)125:4(265)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pingbo Tang
    • 1
  • Cheng Zhang
    • 1
  • Alper Yilmaz
    • 2
  • Nancy Cooke
    • 3
  • Ronald Laurids Boring
    • 4
  • Allan Chasey
    • 1
  • Timothy Vaughn
    • 5
  • Samuel Jones
    • 5
  • Ashish Gupta
    • 2
  • Verica Buchanan
    • 3
  1. 1.Del E. Webb School of ConstructionArizona State UniversityTempeUSA
  2. 2.Department of Civil, Environment and Geodetic EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Human Systems Engineering ProgramArizona State UniversityMesaUSA
  4. 4.Idaho National LaboratoryIdaho FallsUSA
  5. 5.Palo Verde Nuclear Generating StationTonopahUSA

Personalised recommendations